• Title/Summary/Keyword: galaxies:evolution

Search Result 450, Processing Time 0.034 seconds

INVESTIGATING PLASMA-PHYSICAL PROPERTIES OF JETS IN NEARBY RADIO-BRIGHT AGN WITH KVN AND KaVA

  • KIM, JAE-YOUNG;TRIPPE, SASCHA;SOHN, BONG WON;OH, JUNGHWAN;PARK, JONG-HO;LEE, SANG-SUNG;LEE, TAESEOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.453-455
    • /
    • 2015
  • In this paper we introduce the Plasma Physics of Active Galactic Nuclei project, which is an ongoing experiment with Korean VLBI Network (KVN) and KVN and VERA Array (KaVA) to study multi-frequency polarimetric properties on parsec scales of active galaxies. The goal of the project is to improve our understanding of fundamental jet physics, especially evolution of the relativistic outflow coupled with the large-scale magnetic field. We selected six radio-loud AGN as our targets. So far we (i) detected resolved emissions regions at 86 and 129 GHz on VLBI scales, (ii) constructed 2D spectral index maps of the outflows, and (iii) found polarizations at 22 and 43 GHz for a few targets. Here we present spectral index distributions of 3C 120 between 22 and 43 GHz and a linear polarization map of BL Lac at 43 GHz obtained with KVN.

The Black Hole Mass - Stellar Velocity Dispersion Relation of Narrow-Line Seyfert 1 Galaxies

  • Yoon, Yosep;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2012
  • Narrow-Line Seyfert 1 galaxies are arguably the most important AGN subclass in investigating the origin of the black hole mass-galaxy stellar velocity dispersion (MBH-${\sigma}$) relation because of their high accretion rates close to the Eddington limit. Currently, it is still under discussion whether NLS1s are off from the local MBH-${\sigma}$ relation. We select a sample of 325 NLS1 at relatively low redshift (z<0.1) from the SDSS DR7 by constraining FWHM of $H{\beta}$ in the range of 800-2,200 km/s. Among them, we measured stellar velocity dispersion of 40 objects which show strong stellar absorption lines, e.g. Mg b triplet(${\sim}5175{\AA}$), Fe($5270{\AA}$). In contrast, the other 285 objects show too weak stellar absorption lines to measure velocity dispersion. Using the sample of 40 objects with stellar velocity dispersion measurements, we investigate whether NLS1s follow the same MBH-${\sigma}$ relation as normal galaxies and broad line AGNs. We also test the reliability of the width of narrow lines as a surrogate of stellar velocity dispersion by comparing directly measured stellar velocity dispersion with ${\sigma}$ inferred from [O III], [N II], [S II] line widths, respectively. We will discuss the connection between AGN activity in NLS1s and galaxy evolution based on these results.

  • PDF

A Numerical Study of Stellar Bars and Nuclear Rings in Barred Galaxies

  • Seo, Woo-Young;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2019
  • To study the formation and evolution of stellar bars and gaseous nuclear rings in barred galaxies in realistic environments, we run fully self-consistent three-dimensional simulations of isolated disk galaxies. We consider two groups of models with cold or warm disks that differ in the radial velocity dispersion. We also vary the gas fraction of the disks. We found that a bar forms earlier and more strongly as the gas fraction increases in the cold disks, while the gas delays the bar formation in the warm disks. The bar formation enhances a central mass concentration which in turn weakens the bar strength temporarily, after which the bar regrows to become stronger in a model with a smaller gas fraction in both cold and warm disks. Although all bars rotate fast in the beginning, they rapidly turn to slow rotators. Gas infalling to the central region forms a dense star-forming nuclear ring. The ring size is very small when it first forms and grows over time. The ring star formation is episodic and bursty due to star formation feedback, and has a good correlation with the mass inflow rate to the ring. Some expanding shells produced by star formation feedback are sheared out in the bar regions and collide with dust lanes to appear as filamentary interbar spurs.

  • PDF

KS4 Galaxy Clusters Catalog in Southern Sky

  • Park, Bomi;Im, Myungshin;Kim, Joonho;Hyun, Minhee;Lee, Seong-Kook;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2021
  • Galaxy clusters are the largest structures in the universe located at the top of the cosmological hierarchical model, so the evolution of the universe can be understood by studying clusters of galaxies. Therefore, finding a larger number of galaxy clusters plays an important role in exploring how the universe evolves. A large number of catalogs for galaxy clusters in the northern sky have been published; however, there are few catalogs in the southern sky due to the lack of wide sky survey data. KMTNet Synoptic Survey of Southern Sky(KS4) project, which observes a wide area of the southern sky about 7000 deg2 with KMTNet telescopes for two years, is in progress under the SNU Astronomy Research Center. We use the KS4 multi-wavelength optical data and measure photometric redshifts of galaxies for finding galaxy clusters at redshift z<1. Currently, the KS4 project has observed approximately 33% of the target region, and a pipeline that measures photometric redshifts of galaxies has been created. When the project is completed, we expect to find more than a hundred thousand galaxy clusters, and this will improve the study of galaxy clusters in the southern sky.

  • PDF

Discovery of Massive Galaxy Cluster Candidates in the Southern Sky

  • Park, Bomi;Im, Myungshin;Kim, Joonho;Hyun, Minhee;Lee, Seong-Kook;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2021
  • Galaxy clusters are the largest structures in the universe located at the top of the cosmological hierarchical model, so the evolution of the universe can be understood by studying clusters of galaxies. Therefore, finding a larger number of galaxy clusters plays an important role in exploring how the universe evolves. A large number of catalogs for galaxy clusters in the northern sky have been published; however, there are few catalogs in the southern sky due to the lack of wide sky survey data. KMTNet Synoptic Survey of Southern Sky(KS4) project, which observes a wide area of the southern sky about 7000 deg2 with KMTNet telescopes for two years, is in progress under the SNU Astronomy Research Center. We use the KS4 multi-wavelength optical data and measure photometric redshifts of galaxies for finding galaxy clusters at redshift z<1. Currently, the KS4 project has observed approximately 50% of the target region, and a pipeline that measures photometric redshifts of galaxies has been created. When the project is completed, we expect to find more than a hundred thousand galaxy clusters, and this will improve the study of galaxy clusters in the southern sky.

  • PDF

Cosmological Origin of Satellites around Isolated Dwarf Galaxies

  • Chun, Kyungwon;Shin, Jihye;Smith, Rory;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2019
  • We trace the cosmological origin of satellites around isolated dwarf galaxies using a very high resolution (12 pc/h) cosmological hydrodynamic zoom simulation. To realistically describe the formation and evolution of small-mass stellar satellites, our model includes a full baryonic physics treatment. We find that the mini-halos form objects resembling dwarf galaxies. The majority of their star forming gas is accreted after reionization, thus the survival of a mini-halo's gas to reionization is not an important factor. Instead, the key factor seems to be the ability for a mini-halo to cool its recently accreted gas, which is more efficient in more massive halos. Although the host galaxy is only a dwarf galaxy itself, we find that ram pressure is an efficient means by which accreted mini-halos lose their gas content, both by interacting with hot halo gas but also in direct collisions with the gas disk of the host. The satellites are also disrupted by the tidal forces near the center of the host galaxy. Compared to the disrupted satellites, surviving satellites are relatively more massive, but tend to infall later into the host galaxy, thus reducing the time they are subjected to destructive environmental mechanisms and dynamical friction.

  • PDF

Ram pressure stripping conditions : Theory vs. Observation

  • Lee, Seona;Sheen, Yun-Kyeong;Yoon, Hyein;Jaffe, Yara;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.33.1-33.1
    • /
    • 2020
  • Ram pressure stripping (RPS) which is known to be one of the key effects that can remove the interstellar gas in the dense environment, can be described as a simple momentum transfer relation (Gunn & Gott 1972). However, it has been suggested that the actual gas stripping process is likely more complicated than Gunn & Gott's prescription due to the complexity of gas physics such as compression, cooling and heating. By comparing the gas truncation radius predicted by theory with the stripping radius measured from the HI observation of Virgo cluster galaxies, we attempt to verify how well the RPS process can be understood by momentum transfer alone. Among the sample of galaxies undergoing active RPS, we generally find a good agreement between what is predicted and what is observed within the measurement uncertainties. However, those galaxies with the signs of other environmental effects than RPS such as tidal interaction, and/or the ones likely at relatively early or later stages of RPS show some offsets between the theory and the observation. These results imply that Gunn & Gott's formula works reasonably well in a broad sense when the RPS is a dominant process and the surrounding environment at the current location of the sample can be well defined. Otherwise, the impact of the second mechanism, as well as the (current and past) environment of the sample, should be more carefully reviewed to assess the impact of RPS on galaxy evolution.

  • PDF

A Study of Halo-Galaxy Correspondence from the Horizon Run 4

  • Park, Jisook;Kim, Juhan;Park, Changbom;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.50.2-50.2
    • /
    • 2015
  • The Horizon Run 4 is a huge cosmological simulation intended for the study of evolution of dark matter halos in a side of volume of 3150 h-1 Mpc. Using the halo merger trees of most bound particles, we test various models on the survivals of satellites in clusters and will compare them with observed satellite galaxies in a one-to-one correspondence model. We estimate the abundances of central and satellite subhalos, and compare them with the SDSS main-galaxy group catalogue provided by Tempel et al. (2014). Based on these comparisons we will study the mass-to-light relations, environmental effects on morphology and luminosity function, halo occupations in clusters, and nonlinear dynamics of clusters of galaxies.

  • PDF

The environment dependences of quasar properties in the Sloan Digital Sky Survey

  • Song, Hyunmi;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.59.2-59.2
    • /
    • 2014
  • We study the environmental dependences of various quasar properties using the Sloan Digital Sky Survey (SDSS). For an environmental indicator, we construct the galaxy number density field from the latest data (Data Release 12) of Constant MASS (CMASS) galaxies of SDSS in the redshift range 0.46<=z<=0.59. The galaxy number density field is determined by searching the 20 nearest galaxies from each grid point. For quasars, we use the fifth edition of the SDSS Quasar Catalog made by Schneider et al. (2010) and the catalog of properties for the quasars by Shen et al. (2011). We find environmental dependences of quasar properties as a function of the galaxy number density. This will help us to understand the evolution of quasars with their environment, which will be useful to improve modeling Active Galactic Nuclei feedback in cosmological hydrodynamic simulations.

  • PDF

Weak Lensing Analysis On The Merging Galaxy Cluster Abell 115

  • Kim, Mincheol;Jee, Myungkook J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2017
  • The galaxy cluster Abell 115 shows ongoing merger features, which suggest that it might be in an intermediate phase of dynamical evolution. As merging clusters often show, the characteristic hints of A115's merging activities include radio relics, double X-ray peaks, and large offsets between the cluster member galaxies and the X-ray distributions. To constrain the exact stage of the merger, it is necessary to obtain its dark matter distribution. In this study, we carry out a precision weak lensing study of this interesting system based on Subaru images. We present our mass reconstruction together with descriptions on our core procedure of the analysis: Subaru data reduction, galaxy shape measurement, and source selection. We find that Abell 115 consists of two massive dark matter clumps, which closely follow the cluster galaxies. Our weak lensing mass estimate is a few factors lower than the published dynamical mass obtained from velocity dispersion. This large mass discrepancy may be attributed to a significant departure from dynamical equilibrium.

  • PDF