• Title/Summary/Keyword: galaxies:disk

Search Result 164, Processing Time 0.023 seconds

Nuclear star formation in galaxies due to non-axisymmetric bulges

  • Kim, Eunbin;Kim, Sungsoo S.;Lee, Gwang-Ho;Lee, Myung Gyoon;Grijs, Richard De;Choi, Yun-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2014
  • A non-axisymmetric mass distribution in the galactic bulge (or bar) causes gas flow from the disk to the nuclear region, inducing intense star formation in the nucleus. We investigate the relation between the ellipticity of the bulge and the presence of a nuclear starburst by using a volume-limited sample of galaxies. We use 1,680 spiral galaxies with Mr < -19.5 at 0.02 <= z < 0.05 in the Sloan Digital Sky Survey Data Release 7. We find that the occurrence of nuclear starburst has a moderate correlation with bulge ellipticity in intermediate-type spiral galaxies (morphology classes Sab~Sb) in low galaxy number density environments. In high galaxy number density environments, close encounters and mergers between galaxies can cause gas inflow to the nuclear region even without the presence of non-axisymmetric bulges.

  • PDF

The ISM properties under ICM pressure in the cluster environment : NGC4330, NGC4402, NGC4522, NGC4569

  • Lee, Bumhyun;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.85.2-85.2
    • /
    • 2012
  • The interstellar medium (ISM) of galaxies in the galaxy cluster can well be affected by the intracluster medium (ICM). Among many suggested environmental processes, ram pressure stripping can effectively remove gas through the interaction with the ICM. In fact, Cluster galaxies are lower in HI gas mass compared to their field counterparts, and in recent high resolution HI imaging studies, many galaxies in dense environments have been found to be ram pressure stripped in HI. However, it is still under debate whether the ICM pressure can also remove dense molecular gas from the galactic disk, which plays more important role in star formation and hence galaxy evolution. To answer this question, we have obtained high resolution 12/13 CO (2-1) data from the Sub Millimeter Array (SMA) of four galaxies at various HI stripping stages to study how the molecular gas properties change as the galaxy experiences the ICM pressure. We investigate the physical properties of molecular gas with 12/13 CO images. By comparing with other wavelength data, i.e. data(optical, HI, $H{\alpha}$, etc), we discuss how and in which timescale galaxies can migrate from the blue cloud to the red sequence due to ram pressure stripping.

  • PDF

Dark Matter Deficient Galaxies Produced via High-velocity Galaxy Collisions In High-resolution Numerical Simulations

  • Shin, Eun-jin;Jung, Minyong;Kwon, Goojin;Kim, Ji-hoon;Lee, Joohyun;Jo, Yongseok;Oh, Boon Kiat
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2020
  • The recent discovery of diffuse dwarf galaxies that are deficient in dark matter appears to challenge the current paradigm of structure formation in our Universe. We describe the numerical experiments to determine if the so-called dark matter deficient galaxies (DMDGs) could be produced when two gas-rich, dwarf-sized galaxies collide with a high relative velocity of ~ 300km/s. Using idealized high-resolution simulations with both mesh-based and particle-based gravito-hydrodynamics codes, we find that DMDGs can form as high-velocity galaxy collisions separate dark matter from the warm disk gas which subsequently is compressed by shock and tidal interaction to form stars. Then using a large simulated universe ILLUSTRISTNG, we discover a number of high-velocity galaxy collision events in which DMDGs are expected to form. However, we did not find evidence that these types of collisions actually produced DMDGs in the ILLUSTRISTNG100-1 run. We argue that the resolution of the numerical experiment is critical to realize the "collision-induced" DMDG formation scenario. Our results demonstrate one of many routes in which galaxies could form with unconventional dark matter fractions.

  • PDF

HI gas kinematics of paired galaxies in the cluster environment from ASKAP pilot observations

  • Kim, Shin-Jeong;Oh, Se-Heon;Kim, Minsu;Park, Hye-Jin;Kim, Shinna
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2021
  • We examine the HI gas kinematics and distributions of galaxy pairs in group or cluster environments from high-resolution Australian Square Kilometer Array Pathfinder (ASKAP) WALLABY pilot observations. We use 32 well-resolved close pair galaxies from the Hydra, Norma, and NGC 4636, two clusters and a group of which are identified by their spectroscopy information and additional visual inspection. We perform profile decomposition of HI velocity profiles of the galaxies using a new tool, BAYGAUD which allows us to separate a line-of-sight velocity profile into an optimal number of Gaussian components based on Bayesian MCMC techniques. Then, we construct super profiles via stacking of individual HI velocity profiles after aligning their central velocities. We fit a model which consists of double Gaussian components to the super profiles, and classify them as kinematically cold and warm HI gas components with respect to their velocity dispersions, narrower or wider 𝜎, respectively. The kinematically cold HI gas reservoir (M_cold/M_HI) of the paired galaxies is found to be relatively higher than that of unpaired control samples in the clusters and the group, showing a positive correlation with the HI mass in general. Additionally, we quantify the gravitational instability of the HI gas disk of the sample galaxies using their Toomre Q parameters and HI morphological disturbances. While no significant difference is found for the Q parameter values between the paired and unpaired galaxies, the paired galaxies tend to have larger HI asymmetry values which are derived using their moment0 map compared to those of the non-paired control sample galaxies in the distribution.

  • PDF

LONG-TERM SOFT X-RAY VARIABILITY OF ACTIVE GALAXY MRK 841

  • Kim, Chul-Hee
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • We present an analysis of the soft X-ray emission of MRK 841 to investigate its long-term variation. The light variation of MRK 841 for three different energy bands of soft, medium, and hard values were studied. The maximum variability with a factor of 5 for about two years was confirmed at all three different bands. The light curves exhibit a gradual variation of brightness. In addition to a gradual variation, the short- term or micro variation was also confirmed with a factor of about two for all three different bands. The light variation of each band did not exhibit a correlation between them, but the flare event is strongest in the soft band. The hardness ratio for hard and soft bands shows irregular variation but there was no correlation between them. It was confirmed that there is a gradual decrease of the photon index. Results of our analysis are discussed within the framework of the accretion disk phenomenon.

On the Influence of the Moment of Inertia of Gas on the Galactic Rotation Curves

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • There are two models that explain the rotation curves of galaxies: dark matter, which gives the missing contribution to the gravitational potential of the standard theory of gravity, and modified theories of gravity, according to which the gravitational potential is created by ordinary visible mass. Both models have some disadvantages. The article offers a new look at the problem of galactic rotation curves. The author suggests that the moment of inertia creates an additional gravitational potential along with the mass. The numerical simulation carried out on the example of fourteen galaxies confirms the validity of such an assumption. This approach makes it possible to explain the constancy of gas velocities outside the galactic disk without involving the hypothesis of the existence of dark matter. At the same time, the proposed approach lacks the disadvantages of modified theories of gravity, where the gravitational potential is created only by the mass of visible matter.

Effect of Dark Matter on the Collision of High Velocity Clouds with the Galactic Disk

  • Gwak, Gyu-Jin;Kim, Jong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2013
  • High velocity clouds (HVCs) are H I clouds that move with large speed (${\mid}V_{LSR}{\mid}$ >100 km/s) in the halo of the Milky Way. It is now evident that at least some populations of HVCs originated from extragalactic sources, either primordial gas left over from the galaxy formation or gaseous material stripped off from other galaxies closely passing by the Milky Way. HVCs with extragalactic origin play an important role in the star formation of the Milky Way when they eventually collide with the disk of the Milky Way. Although it is still observationally controversial whether HVCs are surrounded by dark matter or not, it is theoretically interesting to investigate the effect of dark matter on the collision of HVCs with the disk of the Milky Way. We model this scenario by using hydrodynamic simulations and search for proper parameters that explain the currently available observations such as the Smith Cloud that is thought to have collided with the Galactic disk already.

  • PDF

Molecular gas and star formation in early-type galaxies

  • Bureau, Martin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.65-65
    • /
    • 2011
  • Early-type galaxies represent the end point of galaxy evolution and, despite pervasive residual star formation, are generally considered "red and dead", that is composed exclusively of old stars with no star formation. Here, their molecular gas content is constrained and discussed in relation to their evolution, supporting the continuing importance of minor mergers and/or cold gas accretion. First, as part of the Atlas3D survey, the first complete, large, volume-limited survey of CO in normal early-type galaxies is presented. At least of 23% of local early-types possess a substantial amount of molecular gas, the necessary ingredient for star formation, independent of mass and environment but dependent on the specific stellar angular momentum. Second, using CO synthesis imaging, the extent of the molecular gas is constrained and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of all systems, more than half in the field, while external gas accretion must be shot down in clusters. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Fourth, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation (e.g. Schmidt-Kennicutt law, far infrared-radio continuum correlation), suggesting a greater diversity in star formation processes than observed in disk galaxies and the possibility of "morphological quenching". Lastly, a first step toward constraining the physical properties of the molecular gas is taken, by modeling the line ratios of density- and opacity-sensitive molecules in a few objects. Taken together, these observations argue for the continuing importance of (minor) mergers and cold gas accretion in local early-types, and they provide a much greater understanding of the gas cycle in the galaxies harbouring most of the stellar mass. In the future, better dust masses and dust-to-gas mass ratios from Herschel should allow to place entirely independent constraints on the gas supply, while spatially-resolved high-density molecular gas tracers observed with ALMA will probe the interstellar medium and star formation laws locally in a regime entirely different from that normally probed in spiral galaxies.

  • PDF

POSITIONAL COINCIDENCE BETWEEN WATER MASERS AND A PLASMA TORUS IN NGC 1052

  • SAWADA-SATOH SATOKO;KAMENO SEIJI;SHIBATA KATSUNORI M.;INOUE MAKOTO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.183-186
    • /
    • 2005
  • We present results of the VLBA observation toward the radio continuum and water maser emissions in a nearby LINER galaxy NGC 1052. The jet structure observed in 2000 is similar to that in 1998, and the two jet structures in 1998 and 2000 support the sub-luminal motion with apparent velocity of 0.26c. Distribution of water maser spots are located ${\~}$0.05 pc shifted to southwest from the component which is supported to be the nucleus, and no rapid positional change of the water maser gas with respect to the central engine is seen from 1995 to 2000. The maser gas is positionally coincident with a plasma torus, and the position of the maser gas relative to the nucleus is stable from 1995 to 2000. The maser gas in NGC 1052 could be explained to be associated with the nuclear circumnuclear torus or disk like the situation found in the nucleus of NGC 4258.

Color Dispersion as an Indicator of Stellar Population Complexity for Galaxies in Clusters

  • Lee, Joon Hyeop;Pak, Mina;Lee, Hye-Ran;Oh, Sree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.34.1-34.1
    • /
    • 2018
  • We investigate the properties of bright galaxies with various morphological types in Abell 1139 and Abell 2589, using the pixel color-magnitude diagram (pCMD) analysis. The 32 bright member galaxies ($Mr{\leq}-21.3mag$) are deeply imaged in the g and r bands in our CFHT/MegaCam observations, as a part of the KASI-Yonsei Deep Imaging Survey of Clusters (KYDISC). We examine how the features of their pCMDs depend on galaxy morphology and infrared color. We find that the g - r color dispersion as a function of surface brightness (${\mu}r$) shows better performance in distinguishing galaxy morphology, than the mean g - r color does. The best set of parameters for galaxy classification appears to be a combination of the minimum color dispersion at ${\mu}r{\leq}21.2mag\;arcsec-2$ and the maximum color dispersion at $20.0{\leq}{\mu}r{\leq}21.0mag\;arcsec-2$: the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Moreover, the color dispersion of an elliptical galaxy appears to be correlated with its WISE infrared color ([4.6]-[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.

  • PDF