• Title/Summary/Keyword: galaxies:active

Search Result 200, Processing Time 0.021 seconds

Catching a growing giant: Discovery of a galaxy cluster in formation

  • Lee, Seong-Kook;Im, Myungshin;Park, Bomi;Hyun, Minhee;Paek, Insu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.33.3-34
    • /
    • 2021
  • In LCDM universe, large, massive structures, like galaxy clusters, grow through the successive accretion/mergers of smaller structures. Therefore, at high redshift, unlike local, it is expected that there would be plenty of galaxy clusters which are still growing. Here, we report the discovery of a high-redshift (z~1) galaxy cluster which is in its active formation stage. This cluster is well connected to the large scale overdense environment and contains high fraction of star-forming galaxies, providing a good example supporting our previously suggested 'Web-feeding model'.

  • PDF

AGN BROAD LINE REGIONS SCALE WITH BOLOMETRIC LUMINOSITY

  • TRIPPE, SASCHA
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.203-206
    • /
    • 2015
  • The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity, λLλ, as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with the bolometric AGN luminosity rather than λLλ, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on Hα/Hβ and CIV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.

HOW TO MONITOR AGN INTRA-DAY VARIABILITY AT 230GHZ

  • Kim, Jae-Young;Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • We probe the feasibility of high-frequency radio observations of very rapid flux variations in compact active galactic nuclei (AGN). Our study assumes observations at 230GHz with a small 6-meter class observatory, using the SNU Radio Astronomical Observatory (SRAO) as an example. We find that 33 radio-bright sources are observable with signal-to-noise ratios larger than ten. We derive statistical detection limits via exhaustive Monte Carlo simulations assuming (a) periodic, and (b) episodic flaring flux variations on time-scales as small as tens of minutes. We conclude that a wide range of flux variations is observable. This makes high-frequency radio observations-even with small observatories-a powerful probe of AGN intra-day variability; especially, those which complement observations at lower radio frequencies with larger observatories like the Korean VLBI Network (KVN).

STUDY OF M82 USING SPECTRA FROM THE INFRARED SPACE OBSERVATORY

  • SOHN JUNGJOO;ANN H. B.;PAK SOOJONG;LEE H. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2001
  • We have studied the central parts of M82, which is a well-known infrared luminous, starburst galaxy, by analyzing archival data from the Infrared Space Observatory (ISO). M82 was observed at 11 positions covering $\pm$45" from the center along the major axis. We analyzed 4 emission lines, [ArIII] 8.99 ${\mu}m$, $H_2$ 17.034 ${\mu}m$, [FeII] 25,98 ${\mu}m$, and [SiII] 34,815 ${\mu}m$ from $SWSO_2$ data. The integrated flux distributions of these lines are quite different. The $H_2$ line shows symmetric twin peaks at $\~$18" from the center, which is a general characteristic of molecular lines in starburst or barred galaxies. This line appears to be associated with the rotating molecular ring at around $\~$200 pc just outside the inner spiral arm. The relative depletion of the $H_2$ line at the center may be due to the active star formation activity which dissociates the $H_2$ molecules. The other lines have peaks at the center and the distributions are nearly symmetric. The line profiles are deconvolved assuming that both intrinsic and instrumental profiles are Gaussian. The velocity dispersion outside the core is found to be $\~50 km s^{-1}$. The central velocity dispersion is much higher than $50 km s^{-1}$, and different lines give different values. The large central velocity dispersion ($\sigma$) is mostly due to the rotation, but there is also evidence for a high $\sigma$ for [ArIII] line. We also generated position-velocity maps for these four lines. We found very diverse features from these maps.

  • PDF

SPATIALLY RESOLVED KINEMATICS OF GAS AND STARS IN HIDDEN TYPE 1 AGNS

  • Son, Donghoon;Woo, Jong-Hak;Eun, Da-In;Cho, Hojin;Karouzos, Marios;Park, Songyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.5
    • /
    • pp.103-115
    • /
    • 2020
  • We analyze the spatially resolved kinematics of gas and stars for a sample of ten hidden type 1 AGNs in order to investigate the nature of their central sources and the scaling relation with host galaxy stellar velocity dispersion. We select our sample from a large number of hidden type 1 AGNs, which are identified based on the presence of a broad (full width at half maximum ≳1000 km s-1) component in the Hα line profile and which are frequently mis-classified as type 2 AGNs because AGN continuum and broad emission lines are weak or obscured in the optical spectral range. We used the Blue Channel Spectrograph at the 6.5-m Multiple Mirror Telescope to obtain long-slit data with a spatial scale of 0.3 arcsec pixel-1. We detected broad Hβ lines for only two targets; however, the presence of strong broad Hα lines indicates that the AGNs we selected are all low-luminosity type 1 AGNs. We measured the velocity, velocity dispersion, and flux of stellar continuum and gas emission lines (i.e., Hβ and [O III]) as a function of distance from the center. The spatially resolved gas kinematics traced by Hβ or [O III] are generally similar to the stellar kinematics except for the inner center, where signatures of gas outflows are detected. We compare the luminosity-weighted effective stellar velocity dispersions with the black hole masses and find that our hidden type 1 AGNs, which have relatively low back hole masses, follow the same scaling relation as reverberation-mapped type 1 AGN and more massive inactive galaxies.

MONITORING OF GAMMA-RAY BRIGHT AGN: THE MULTI-FREQUENCY POLARIZATION OF THE FLARING BLAZAR 3C 279

  • KANG, SINCHEOL;LEE, SANG-SUNG;BYUN, DO-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.257-265
    • /
    • 2015
  • We present results of long-term multi-wavelength polarization observations of the powerful blazar 3C 279 after its γ-ray flare on 2013 December 20. We followed up this flare with single-dish polarization observations using two 21-m telescopes of the Korean VLBI Network. Observations carried out weekly from 2013 December 25 to 2015 January 11, at 22 GHz, 43 GHz, 86 GHz simultaneously, as part of the Monitoring Of GAmma-ray Bright AGN (MOGABA) program. We measured 3C 279 total flux densities of 22–34 Jy at 22 GHz, 15–28 Jy (43 GHz), and 10–21 Jy (86 GHz), showing mild variability of ≤ 50 % over the period of our observations. The spectral index between 22 GHz and 86 GHz ranged from −0.13 to −0.36. Linear polarization angles were 27°–38°, 30°–42°, and 33°–50° at 22 GHz, 43 GHz, and 86 GHz, respectively. The degree of linear polarization was in the range of 6–12 %, and slightly decreased with time at all frequencies. We investigated Faraday rotation and depolarization of the polarized emission at 22–86 GHz, and found Faraday rotation measures (RM) of −300 to −1200 rad m−2 between 22 GHz and 43 GHz, and −800 to −5100 rad m−2 between 43 GHz and 86 GHz. The RM values follow a power law with a mean power law index a of 2.2, implying that the polarized emission at these frequencies travels through a Faraday screen in or near the jet. We conclude that the regions emitting polarized radio emission may be different from the region responsible for the 2013 December γ-ray flare and are maintained by the dominant magnetic field perpendicular to the direction of the radio jet at milliarcsecond scales.

NEWLY DISCOVERED FOOTPRINTS OF GALAXY INTERACTION AROUND SEYFERT 2 GALAXY NGC 7743

  • KIM, YONGJUNG;IM, MYUNGSHIN;CHOI, CHANGSU;HYUN, MINHEE;YOON, YONGMIN;TAAK, YOON CHAN;EHGAMBERDIEV, SHUHRAT A.;BURHONOV, OTABEK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.463-464
    • /
    • 2015
  • It has been suggested that only the most luminous AGNs ($L{\gtrsim}10^{45}erg/s$) are triggered by galaxy mergers, while less luminous AGNs ($L{\sim}10^{43}erg/s$) are driven by other internal processes. The lack of merging features in low luminosity AGN host galaxies has been a primary argument against the idea of merger triggering of low luminosity AGNs. But a merger, especially a rather minor one, might still have played an important role in low luminosity AGNs, as minor merging features at low luminosities are more difficult to identify than major merging features. Using SNUCAM on the 1.5 m telescope at Maidanak observatory, we obtained deep optical images of NGC 7743, a barred spiral galaxy classified as a Seyfert 2 AGN with a low bolometric luminosity of $5{\times}10^{42}erg/s$. Surprisingly, we discovered a merging feature around the galaxy, which indicates past merging activity in the galaxy. This example indicates that the merging fraction of low luminosity AGNs may be much higher than previously thought, hinting at the importance of galaxy mergers even in low luminosity AGNs.

The Spitzer First Look survey Verification Field : Deep Radio and multi-wavelength properties

  • Kim, Kihun;Kim, Sungeun;Yun, Min S.;Gim, Hansung;Kim, Yonhwa
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2012
  • We observed the radio sources found from the First Look Survey (FLS) field at the 1.4 GHz radio continuum emission with the Very Large Array (VLA) using the A configuration. We identify point sources and multi component sources at ${\geq}4{\sigma}$ level. We also present the submillimeter properties of the selected radio sources in the FLS field from the Herschel/SPIRE 250/350/500/${\mu}m$ and AzTEC 1.1mm surveys. The counterparts of the radio sources at submillimeter for these called 'submillimeter galaxies (SMGs)' are detected at infrared wavelength with the Spitzer MIPS 24 & 70 ${\mu}m$ sources. Based on the MMT/HECTOSPEC red-shift survey, IRS spectroscopy, and SDSS photometric red-shift survey, the radio sources are likely to be the extragalactic sources. Here, we use the star formation rate (SFR) derived from the MIPS 24 and 70 ${\mu}m$ luminosity to compare the measured SFR from the VLA 1.4 GHz luminosity. These results show that a tight correlation between the SFR from the radio luminosity and the MIPS $24{\mu}m$ rather than that from the MIPS $70{\mu}m$ luminosity. Radio and IR correlation is also used to indicate the radio and IR properties of star-formation in the galaxies and active galactic nuclei (AGNs). Using the counterpart sources selected at IR and radio wavelengths, we employ the IR/radio flux ratios to determine the properties and population of the selected galaxies.

  • PDF

A SEARCH FOR AGN INTRA-DAY VARIABILITY WITH KVN

  • LEE, TAESEOK;TRIPPE, SASCHA;OH, JUNGHWAN;BYUN, DO-YOUNG;SOHN, BONG-WON;LEE, SANG-SUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.313-323
    • /
    • 2015
  • Active galactic nuclei (AGN) are known for irregular variability on all time scales, down to intra-day variability with relative variations of a few percent within minutes to hours. On such short timescales, unexplored territory, such as the possible existence of a shortest characteristic time scale of activity and the shape of the high frequency end of AGN power spectra, still exists. We present the results of AGN single-dish fast photometry performed with the Korean VLBI Network (KVN). Observations were done in a “anti-correlated” mode using two antennas, with always at least one antenna pointing at the target. This results in an effective time resolution of less than three minutes. We used all four KVN frequencies, 22, 43, 86, and 129 GHz, in order to trace spectral variability, if any. We were able to derive high-quality light curves for 3C 111, 3C 454.3, and BL Lacertae at 22 and 43 GHz, and for 3C 279 at 86 GHz, between May 2012 and April 2013. We performed a detailed statistical analysis in order to assess the levels of variability and the corresponding upper limits. We found upper limits on flux variability ranging from ~1.6% to ~7.6%. The upper limits on the derived brightness temperatures exceed the inverse Compton limit by three to six orders of magnitude. From our results, plus comparison with data obtained by the University of Michigan Radio Astronomy Observatory, we conclude that we have not detected source-intrinsic variability which would have to occur at sub-per cent levels.

PAGAN II: THE EVOLUTION OF AGN JETS ON SUB-PARSEC SCALES

  • OH, JUNGHWAN;TRIPPE, SASCHA;KANG, SINCHEOL;KIM, JAE-YOUNG;PARK, JONG-HO;LEE, TAESEOK;KIM, DAEWON;KINO, MOTOKI;LEE, SANG-SUNG;SOHN, BONG WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.299-311
    • /
    • 2015
  • We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the uv coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations – flat core and steep jets – while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about 5c. This constrains the lower limits of the intrinsic component velocities to ~ 0.98c and the upper limits of the angle between jet and line of sight to ~20°. In agreement with global jet expansion, jet components show systematically larger diameters d at larger core distances r, following the global relation d ≈ 0.2r, albeit within substantial scatter.