• 제목/요약/키워드: galaxies%3A structure

검색결과 73건 처리시간 0.019초

SPIRAL ARM MORPHOLOGY OF NEARBY GALAXIES

  • Ann, Hong Bae;Lee, Hyun-Rok
    • 천문학회지
    • /
    • 제46권3호
    • /
    • pp.141-149
    • /
    • 2013
  • We analyze the spiral structure of 1725 nearby spiral galaxies with redshift less than 0.02. We use the color images provided by the Sloan Digital Sky Survey. We determine the arm classes (grand design, multiple-arm, flocculent) and the broad Hubble types (early, intermediate, late) as well as the bar types (SA, SAB, SB) by visual inspection. We find that flocculent galaxies are mostly of late Hubble type while multiple-arm galaxies are likely to be of early Hubble type. The fractional distribution of grand design galaxies is nearly constant along the Hubble type. The dependence of arm class on bar type is not as strong as that of the Hubble type. However, there is about a three times larger fraction of grand design spirals in SB galaxies than in SA galaxies, with nearly constant fractions of multiple-arm galaxies. However, if we consider the Hubble type and bar type together, grand design spirals are more frequent in early types than in late types for SA and SAB galaxies, while they are almost constant along the Hubble type for SB galaxies. There are clear correlations between spiral structures and the local background density: strongly barred, early-type, grand design spirals favor high-density regions, while non-barred, late-type, flocculent galaxies are likely to be found in low-density regions.

LUMINOSITY PROFILES OF dE AND dS0 GALAXIES IN THE VIRGO CLUSTER

  • Kim, Kyoo-Hyun;Lee, Kyung-Hoon;Ann, Hong-Bae
    • 천문학회지
    • /
    • 제39권3호
    • /
    • pp.57-71
    • /
    • 2006
  • We investigated the structural parameters of a sample of 30 dwarf galaxies(15 dEs and 15 dS0s) in the Virgo Cluster using i-band images from the Sloan Digital Sky Survey Data Release 4. Among 28 galaxies for which surface brightness profiles were derived from ellipse fittings, 23 galaxies had a single component that was adequately described by a generalized $S\acute{e}rsic$ function with a shape parameter ranging from n=0.5 to 2, while 5 galaxies(2 dEs and 3 dS0s) had bulge and disk components that were fitted by a generalized $S\acute{e}rsic$ function and an exponential function, respectively. Since the majority of dwarf galaxies in the present sample had a single component, it seems likely that genuine dS0 galaxies that have disk and bulge components are quite rare in the Virgo Cluster. The similarity in structural parameters of genuine dS0 galaxies in the Virgo Cluster with those of Magellanic-type galaxies implies that the progenitors of dwarf lenticular galaxies in the Virgo Cluster were most likely Magellanic-type galaxies if dS0s are harassed late-type spirals.

Towards a Better Understanding of Structure Formation: Galaxies and Dark Matter

  • Hwang, Ho Seong
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • Understanding the interplay between galaxies and dark matter in the universe is one of key challenges in modern astrophysics. This provides an important test of structure formation scenarios and cosmological models. I discuss three aspects of this test: (1) comparing the matter distribution from galaxy redshift surveys with that from weak-lensing surveys, (2) statistical comparison of large-scale structures between observations and cosmological simulations, and (3) multi-wavelength study of galaxies. These tests underscore the importance of combining photometric and spectroscopic surveys in observations along with cosmological simulations for exploring and understanding the structure formation.

  • PDF

LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE

  • KRISHNA GOPAL;WIITA PAUL J.;BARAI PARAMITA
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.517-525
    • /
    • 2004
  • We present an update on our proposal that during the 'quasar era' (1.5 $\le$ z $\le$ 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.

THE COSMIC EVOLUTION OF LUMINOUS INFRARED GALAXIES: STRONG INTERACTIONS/MERGERS OF GAS-RICH DISKS

  • SANDERS D. B.
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.149-158
    • /
    • 2003
  • Deep surveys at mid-infared through submillimeter wavelengths indicate that a substantial fraction of the total luminosity output from galaxies at high redshift (z > 1) emerges at wavelengths 30 - 300${\mu}m$. In addition, much of the star formation and AGN activity associated with galaxy building at these epochs appears to reside in a class of luminous infrared galaxies (LIGs), often so heavily enshrouded in dust that they appear as 'blank-fields' in deep optical/UV surveys. Here we present an update on the state of our current knowledge of the cosmic evolution of LIGs from z = 0 to z $\~$ 4 based on the most recent data obtained from ongoing ground-based redshift surveys of sources detected in ISO and SCUBA deep fields. A scenario for the origin and evolution of LIGs in the local Universe (z < 0.3), based on results from multiwavelength observations of several large complete samples of luminous IRAS galaxies, is then discussed.

SECULAR EVOLUTION OF SPIRAL GALAXIES

  • ZHANG XIAOLEI
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.223-239
    • /
    • 2003
  • It is now a well established fact that galaxies undergo significant morphological transformation during their lifetimes, manifesting as an evolution along the Hubble sequence from the late to the early Hubble types. The physical processes commonly believed to be responsible for this observed evolution trend, i.e. the major and minor mergers, as well as gas accretion under a barred potential, though demonstrated applicability to selected types of galaxies, on the whole have failed to reproduce the most important statistical and internal properties of galaxies. The secular evolution mechanism reviewed in this paper has the potential to overcome most of the known difficulties of the existing theories to provide a natural and coherent explanation of the properties of present day as well as high-redshift galaxies.

Chemical properties of star-forming galaxies in Virgo-related large-scale filamentary structures.

  • Chung, Jiwon;Rey, Soo-Chang;Kim, Suk;Lee, Youngdae;Sung, Eon-Chang
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.75.3-75.3
    • /
    • 2019
  • The filament is an interesting structure in the Universe because clusters form at the nodes of filaments and grow through the continuous accretion of individual galaxies and groups from the surrounding filaments. We study the chemical properties of star-forming (SF) galaxies in the five large-scale filamentary structures (Leo II A, Leo II B, Leo Minor, Canes Venatici, and Virgo III) related with the Virgo cluster, with the spectroscopic data taken with the SDSS DR12, and compare them with those of the Virgo cluster and field galaxies. In mass-metallicity relation, most of the SF galaxies in Virgo-related filaments (except Virgo III filament) show lower metallicity on average than the Virgo cluster SF galaxies, but similar to field counterparts. These chemically less evolved feature of SF galaxies in the filaments and field are more pronounced for lower mass galaxies. This is probably because low mass galaxies have low potential wells and are therefore likely to be sensitive to cluster environmental effects. Interestingly, we find that the metallicity enhancement of SF galaxies in the Virgo III filament. In chemical and morphological perspectives, SF galaxies in the Virgo III thought to be transitional objects possibly transformed from SF late-type galaxies and are on the way to red early-type galaxies in the filament environment. This is the first discovery of systematic 'chemical pre-processing' signature for filament galaxies in Local Universe before they fall into the cluster.

  • PDF

What Shapes Disk Galaxies?: Bar Driven Secular Evolution on Disk Galaxies

  • Kim, Taehyun;Gadotti, Dimitri A.;Athanassoula, Lia;Bosma, Albert;Sheth, Kartik;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.67.3-68
    • /
    • 2016
  • We present evidence of the bar driven secular evolution on disks from z~0.8 to z~0.01. Using $3.6{\mu}m$ images of nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G) and images from the Cosmological Evolution Survey (COSMOS), we find that barred galaxies show a light deficit in the disk surrounding the bar within the bar radius. We quantify this light deficit and find that galaxies with a stronger bar (longer, higher Bar/T) show a more pronounced light deficit. We examine snapshots from N-body simulations and confirm that as a barred galaxy evolves, the bar becomes longer and the light deficit becomes more pronounced. Theoretical studies have predicted that bars evolve by capturing nearby disk stars and employing them to make the bar more elongated and stronger. Therefore the light deficit in the disk is likely produced by bars, and thus bars play a major role in shaping their host galaxies, redistributing not only the gaseous but also the stellar mass within galaxies, with important consequences to their subsequent evolution.

  • PDF

The development of field galaxies in the first half of the cosmic history

  • Park, Minjung;Yi, Sukyoung K.
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.35.3-36
    • /
    • 2018
  • One of the most prevalent knowledge about disk galaxies, which dominate the population of the local Universe, is that they consist of stellar structures with different kinematics, such as thin disk, bulge, and halo. Therefore, investigating when and how these components develop in a galaxy is the key to understanding the evolution of galaxies. Using the NewHorizon simulation, we can resolve the detailed structures of galaxies, in the field environment, from the early Universe where star formation and mergers were most active. We first decompose stellar particles in a galaxy into a disk and a dispersion-dominated, spheroidal, component based on their orbits and then see how these components evolve in terms of mass and structure. At high redshift z~3, galaxies are mostly dispersion-dominated as stars are formed misaligned with the galactic rotational axis. At z=1~2, massive galaxies start to dominantly form disk stars, while less massive galaxies do much later. Furthermore, massive galaxies are forming thinner and larger disks with time, and the preexistent disks are heated or even disrupted to become a part of dispersion-dominated component. Thus, the mass growth of spheroidal components at later epochs is dominated by disrupted stars with disk origins and accreted stars at large radii.

  • PDF

The Evolution of Barred Galaxies

  • Kim, Taehyun;Lee, Myung Gyoon;Sheth, Kartik;Gadotti, Dimitri
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.38.2-38.2
    • /
    • 2014
  • Radial light profiles of bars are known to be related to the morphology of their host galaxies in a way that bars in early type disk galaxies show flat radial light profile, while bars in late type disk galaxies show exponential profile. To quantify how flat or steep bar profiles are, we have performed detailed two-dimensional decompositions on 3.6 micron images for 144 barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), and then modeled bar profiles with Sersic functions. We find that bars in classical bulge, higher bulge-to-total (B/T) galaxies are flatter than bars in bulgeless, lower B/T galaxies. In particular, we find that the presence of a bulge almost always guarantees that the bar is flat. Conversely, bulgeless galaxies, mostly have bars with steep profiles. This implies that the light profile of bars may be a dynamical age indicator of bars. We also find that the shape of bars are boxy and do not change with B/T. This indicates that as galaxies evolve, bars change their light profile while keeping their outermost shape boxy.

  • PDF