• Title/Summary/Keyword: galaxies: spirals

Search Result 31, Processing Time 0.022 seconds

The Relative Role of Bars and Galaxy Environments in AGN Triggering of SDSS Spirals

  • Choi, Yun-Young;Kim, Minbae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.31.3-32
    • /
    • 2021
  • We quantify the relative role of galaxy environment and bar presence on AGN triggering in face-on spiral galaxies using a volume-limited sample with 0.02 < z < 0.055, Mr < 19.5, and σ > 70 km s-1 selected from Sloan Digital Sky Survey (SDSS) Data Release 7. To separate their possible entangled effects, we divide the sample into bar and non-bar samples, and each sample is further divided into three environment cases of isolated galaxies, interacting galaxies with a pair, and cluster galaxies. The isolated case is used as a control sample. For these six cases, we measure AGN fractions at a fixed central star formation rate and central velocity dispersion, σ. We demonstrate that the internal process of the bar-induced gas inflow is more efficient in AGN triggering than the external mechanism of the galaxy interactions in groups and cluster outskirts. The significant effects of bar instability and galaxy environments are found in galaxies with a relatively less massive bulge. We conclude that from the perspective of AGN-galaxy coevolution, a massive black hole is one of the key drivers of spiral galaxy evolution. If it is not met, a bar instability helps the evolution, and in the absence of bars, galaxy interactions/mergers become important. In other words, in the presence of a massive central engine, the role of the two gas inflow mechanisms is reduced or almost disappears. We also find that bars in massive galaxies are very decisive in increasing AGN fractions when the host galaxies are inside clusters.

  • PDF

A New Method to Find Bars

  • Lee, Yun Hee;Ann, Hong Bae;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2014
  • We have classified barred galaxies for 418 RC3 sample galaxies within z < 0.01 from SDSS DR7 using the visual inspection, ellipse fitting method and Fourier analysis. We found the bar fraction to be ~60%, 43% and 70% for each method and that the ellipse fitting method tends to miss the bar when a large bulge hides the transition from bar to disk in early spirals. We also confirmed that the Fourier analysis cannot distinguish between a bar and spiral arm structure. These systematic difficulties may have produced the long-time controversy about bar fraction dependence on Hubble sequence, mass and color. We designed a new method to fine bars by analyzing the ratio map of bar strength in polar coordinates, which yields the bar fraction of ~27% and ~32% for SAB and SB, respectively. The consistency with visual inspection reaches around 70%, and roughly 90% of visual strong bar are classified as SAB and SB in our classification. Although our method also has a weakness that a large bulge lowers the value of bar strength, the missing bar fraction in early spirals is reduced to the level of ~1/4 compared to the ellipse fitting method. Our method can make up for the demerits of the previous automatic classifications and provide a quantitative bar classification that agrees with visual classification.

  • PDF

SPH SIMULATIONS OF BARRED GALAXIES: DYNAMICAL EVOLUTION OF GASEOUS DISK

  • ANN HONG BAE;LEE HVUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2000
  • We have performed extensive simulations of response of gaseous disk in barred galaxies using SPH method. The gravitational potential is assumed to be generated by disk, bulge, halo, and bar. The mass of gaseous disk in SPH simulation is assumed to be negligible compared to the stellar and dark mass component, and the gravitational potential generated by other components is fixed in time. The self-gravity of the gas is not considered in most simulations, but we have made a small set of simulations including the self-gravity of the gas. Non-circular component of velocity generated by the rotating, non-axisymmetric potential causes many interesting features. In most cases, there is a strong tendency of concentration of gas toward the central parts of the galaxy. The morphology of the gas becomes quite complex, but the general behavior can be understood in terms of simple linear approximations: the locations and number of Lindblad resonances play critical role in determining the general distribution of the gas. We present our results in the form of 'atlas' of artificial galaxies. We also make a brief comment on the observational implications of our calculations. Since the gaseous component show interesting features while the stellar component behaves more smoothly, high resolution mapping using molecular emission line for barred galaxies would be desirable.

  • PDF

The temperature and density distribution of molecular gas in a galaxy undergoing strong ram pressure: a case study of NGC 4402

  • Lee, Bumhyun;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2015
  • Galaxies are known to evolve passively in the cluster environment. Indeed, much evidence for HI stripping has been found in cluster galaxies to date, which is likely to be connected to their low star formation rate. What is still puzzling however, is that the molecular gas, which is believed to be more directly related to star formation, shows no significant difference in its fraction between the cluster population and the field galaxies. Therefore, HI stripping alone does not seem to be enough to fully understand how galaxies become passive in galaxy clusters. Intriguingly, our recent high resolution CO study of a subsample of Virgo spirals which are undergoing strong ICM pressure has revealed a highly disturbed molecular gas morphology and kinematics. The morphological and kinematical peculiarities in their CO data have many properties in common with those of HI gas in the sample, indicating that strong ICM pressure in fact can have impacts on dense gas deep inside of a galaxy. This implies that it is the molecular gas conditions rather than the molecular gas stripping which is more responsible for quenching of star formation in cluster galaxies. In this study, using multi transitions of 12CO and 13CO, we investigate the density and temperature distributions of CO gas of a Virgo spiral galaxy, NGC 4402 to probe the physical and chemical properties of molecular gas and their relations to star formation activities.

  • PDF

Study of Environmental Impact on the Galaxy Evolution in the Virgo Cluster

  • Lee, Woong;Rey, Soo-Chang;Kim, Suk;Chung, Jiwon;Lee, Youngdae;Chung, Aeree;Yoon, Hyein
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.47.3-48
    • /
    • 2015
  • We present environmental effects on the galaxy evolution in the Virgo cluster focusing on intracluster medium - interstellar medium (ICM-ISM) interactions and gravitational interactions. We identify signatures of these environmental effects for 21 massive late-type galaxies based on the visual inspection of high resolution HI data from VLA Imaging of Virgo spirals in Atomic gas (VIVA) survey comparing with multi-wavelength data. We classify galaxies into three subgroups showing different environmental effects. First and second groups includes galaxies influenced by ongoing/active and past ram pressure stripping effect, respectively. Third group consists of galaxies undergoing gravitational interactions. Additionally, we define neighbor galaxies for each VIVA galaxies utilizing kinematic data from Extended Virgo Cluster Catalog. Assuming that neighbor galaxies share similar levels of environmental effects with host VIVA galaxies, we investigate environmental effects on galaxy properties in different subgroups using SDSS optical and GALEX ultraviolet photometric data. We find that dwarf neighbor galaxies in first and second groups show rapid quenching of their star formation (SF), while massive counterparts are still in SF activity. On the other hand, most third group galaxies show hints of SF activity regardless of their mass. We conclude that SF and evolution of galaxy in the cluster environment is closely linked to ICM-ISM interactions and dwarf galaxies seem to be more sensitive to this effect compared to massive counterparts.

  • PDF

APPLICATIONS OF SELF-REFERENCING METHOD TO THE VIRGO CLUSTER SPIRALS

  • Chung, Eun-Jung;Kim, Hyo-Young;Rhee, Myung-Hyun
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.371-384
    • /
    • 2005
  • Self-referencing method in revised-OTFTOOL is a new method in On-The-Fly(OTF) observation mode. It uses the source free regions of the observed frame as references instead of the OFFs references. We already analyzed and discussed its proprieties and advantages in the previous paper. In this paper, we make a statistical study about the self-referencing method by applying it to OTF mapping data of 27 Virgo spiral galaxies. We found that the self-referencing method solves the crooked baseline problem for every datacube. It straightens the baseline, and conserves the emissions. Compared with other data processing, the median filtering task 'mwflt' in AIPS, to use self-referencing method is more effective and safe not only to straighten the baseline but also to conserve the emission. For the strong CO galaxies, the data obtained by self-referencing method shows scarcely any difference from those reduced by conventional OFFs references and AIPS median filtering in the range of uncertainties. Undetected CO emissions in datacubes of conventional OFFs references are also not detected in those of self-referencing method. The self-referencing method is expected to save the observing time and simplify data reduction processes. Besides this, using self-referencing method will offer emission-free references more safely.

Warp Characteristics of Spiral Galaxies in the Virgo Cluster

  • Bae, Hyun-Jin;Chung, Ae-Ree;Jozsa, GyulaI. G.;Kim, Sung-Soo;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • Warp phenomenon seems to be ubiquitous among spiral galaxies, and a a number of mechanisms have been suggested as the origin including cosmic infall and tidal interactions. In this work, we compare warp characteristics of cluster spirals and the ones in the field in order to investigate the influence of environment on warping, in particular of gas disks. We make use of a tilted-ring modeling (TRM) method to VLA HI (21cm) data cubes of carefully selected 20 spiral galaxies in the Virgo cluster. The TRM allows us to probe kinematics, e.g., inclination, position angle, and velocity dispersion of HI disks. We compare the properties of each tilted-ring component to mean properties based on optical images. In this contribution, we present preliminary yet important findings on the warp characteristics of spiral galaxies in dense environment, and discuss possible origins of those kinematical structures.

  • PDF

Star Formation in Nuclear Rings of Barred-Spiral Galaxies?

  • Seo, Woo-Young;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.39.2-39.2
    • /
    • 2013
  • We use grid-based hydrodynamic simulations to study star formation history in nuclear rings of barred-spiral galaxies. In our previous study, we concentrated on bar-only galaxies without spirals, finding that the star formation rate (SFR) in a nuclear ring exhibits a strong primary burst at early time before decreasing to below 1 $M_{\odot}/yr$ at late time. The rapid decline is caused by the paucity of the gas in the bar region, due to early massive gas inflows to the nuclear ring. Since star formation in nuclear rings is observed to be sustained for about 1-2 Gyr, this requires mechanisms to supply the gas to the bar regions. In this work, we study the effect of spiral arms on the radial gas inflows and related star formation in the nuclear rings. We show that spiral arms are efficient to remove angular momentum of the gas to cause significant gas inflows to the bar region, provided the patten speed of the arms is much smaller than that of the bar. The inflowing gas is added to a nuclear ring, making the ring SFR episodic over a long period of time. The time interval of multiple bursts of star formation is a few tens to hundred million years, with the mean peak SFR of ${\sim}5M_{\odot}/yr$, consistent with observations of M100.

  • PDF

Propagation of the ionizing radiations leaked out of bright H II regions into the diffuse interstellar medium

  • Seon, Kwang-Il
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Diffuse ionized gas (DIG or warm ionized medium, WIM) outside traditional regions is a major component of the interstellar medium (ISM) not only in our Galaxy, but also in other galaxies. It is generally believed that major fraction of the Halpha emission in the DIG is provided by OB stars. In the "standard" photoionization models, the Lyman continuum photons escaping from bright H II regions is the dominant source responsible for ionizing the DIG. Then, a complex density structure must provide the low-density paths that allow the photons to traverse kiloparsec scales and ionize the gas far from the OB stars not only at large heights above the midplane, but also within a galactic plane. Here, I present Monte-Carlo models to examine the propagation of the ionizing radiation leaked out of traditional H II regions into the diffuse ISM applied to two face-on spirals M 51 and NGC 7424. We find that the "standard" scenario requires absorption too unrealistically small to be believed, but the obtained scale-height of the galactic disk is consistent with those of edge-on galaxies. We also report that the probability density functions of the Halpha intensities of the DIG and H II regions in the galaxies are log-normal, indicating the turbulence property of the ISM.

  • PDF

A COMPREHENSIVE VIEW OF LARGE-SCALE MAGNETIC FIELDS, WITH EMPHASIS ON THE GALACTIC MAGNETIC FIELD NEAR THE SUN

  • HEILES CARL
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.151-154
    • /
    • 1996
  • We examine the observations of large-scale magnetic fields in the Universe. We begin at the largest scale with clusters of galaxies and work our way down through galaxies and finally to the Milky Way. on which we concentrate in detail. We examine the observations of the Galactic magnetic field, and their interpretation, under the philosophy that the Galactic magnetic field is like that in other spiral galaxies. We use pulsar data. diffuse Galactic synchrotron emission, and starlight polarization data to discuss the Galaxy's global magnetic configuration and the uniform ($B_u$), random ($B_r$), and total ($B_t$) components of the field strength. We find disagreement among conclusions derived from the various data sets and argue that the pulsar data are not the best indicator for large-scale Galactic field. Near the Solar circle, we find that the azimuthal average of $B_t$ is 4.2$\mu$G and we adopt $B_u\~$2.2 and $B_r\~3.6{\mu}G$. $B_t$ is higher in spiral arms, reaching $\~5.9{\mu}G$. $B_t$ is higher for smaller $R_{Gal}$, reaching $\~8.0{\mu}G$ for $R_{Gal}$ = 4.0 kpc. The pattern of field lines is not concentric circles but spirals. The inclination of the magnetic spiral may be smaller than that of the Galaxy's spiral arms if our sample, which refers primarily to the interarm region near the Sun, is representative. However, it is not inconceivable that the local field lines follow the Galaxy's spiral pattern, as is observed in external galaxies.

  • PDF