• Title/Summary/Keyword: galaxies: spirals

Search Result 31, Processing Time 0.023 seconds

A new approach to classify barred galaxies based on the potential map

  • Lee, Yun Hee;Park, Myeong-Gu;Ann, Hong Bae;Kim, Taehyun;Seo, Woo-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.33.3-33.3
    • /
    • 2019
  • Automatic, yet reliable methods to find and classify barred galaxies are going to be more important in the era of large galaxy surveys. Here, we introduce a new approach to classify barred galaxies by analyzing the butterfly pattern that Buta & Block (2001) reported as a bar signature on the potential map. We make it easy to find the pattern by moving the ratio map from a Cartesian coordinate to a polar coordinate. Our volume-limited sample consists of 1698 spiral galaxies brighter than Mr = -15.2 with z < 0.01 from the Sloan Digital Sky Survey/DR7 visually classified by Ann et al. (2015). We compared the results of the classification obtained by four different methods: visual inspection, ellipse fitting, Fourier analysis, and our new method. We obtain, for the same sample, different bar fractions of 63%, 48%, 36%, and 56% by visual inspection, ellipse fitting, Fourier analysis, and our new approach, respectively. Although automatic classifications detect visually determined, strongly barred galaxies with the concordance of 74% to 86%, automatically selected barred galaxies contain different amount of weak bars. We find a different dependence of bar fraction on the Hubble type for strong and weak bars: SBs are preponderant in early-type spirals, whereas SABs are in late-type spirals. Moreover, the ellipse fitting method often misses strongly barred galaxies in the bulge-dominated galaxies. These explain why previous works showed the contradictory dependence of the bar fraction on the host galaxy properties. Our new method has the highest agreement with visual inspection in terms of the individual classification and the overall bar fraction. In addition, we find another signature on the ratio map to classify barred galaxies into new two classes that are probably related to the age of the bar.

  • PDF

STAR FORMATION ACTIVITY OF GALAXIES IN A NEARBY COMPACT GROUP: THE NGC 4095 GROUP

  • POOJON, PANOMPORN;SAWANGWIT, UTANE;KRIWATTANAWONG, WICHEAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.507-509
    • /
    • 2015
  • This work aims to study the evolution of galaxies, located in the dense environment of the NGC 4095 compact group, which have recession velocities 6,000 < v ($km\;s^{-1}$) < 8,000. Imaging observations for BV $R_c$ broad-band, and [$S\small{II}$] and red-continuum narrow-band were carried out with the 2.4 m Thai National Telescope (TNT) at Doi Inthanon, Chiang Mai, Thailand. The sample contains 13 galaxies, consisting of 8 spirals, 4 ellipticals and 1 irregular morphological type. Late type galaxies tend to be bluer than early type galaxies. The results show that most of the late type galaxies have ongoing star formation activity, which could be triggered by galaxy-galaxy or tidal interactions, and that young massive stars in these galaxies cause their colors to be bluer than the early type galaxies.

CCD SURFACE PHOTOMETRY OF SPIRAL GALAXIES: BULGE MORPHOLOGY

  • Ann, Hong-Bae
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.4
    • /
    • pp.261-270
    • /
    • 2003
  • We have conducted a V-band CCD surface photometry of 68 disk galaxies to analyze the bulge morphology of nearby spirals. We classify bulges into four types according to their ellipticities and the misalignments between the major axis of the bulge and those of the disk and the bar: spherical, oblate, pseudo triaxial, and triaxial. We found that one third of the bulges are triaxial and they are preponderant in barred galaxies. The presence of the triaxial bulges in a significant fraction of unbarred galaxies as well as in barred galaxies might support the secular evolution hypothesis which postulates that the bar driven mass inflow leads to the formation of triaxial bulges and the destruction of bars when sufficient mass is accumulated in the central regions.

CO and HI Properties of the Virgo Cluster Spiral Galaxies

  • Chung, Eun-Jung;Rhee, Myung-Hyun;Kim, Hyo-Ryoung;Chung, Ae-Ree;Yun, Min-S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.36.1-36.1
    • /
    • 2009
  • We investigate the molecular and atomic gas properties of 20 Virgo cluster spiral galaxies by comparing with optical properties to assess the effect of the Virgo environment on the interstellar media of the Virgo disks. CO maps from FCRAO On-The-Fly (OTF) mapping survey and HI maps from VIVA (VLA Imaging of Virgo spirals in Atomic gas) are shown, and radial properties of molecular and atomic gas are compared. H2 deficiency along with HI is investigated, and gas evolution history of the Virgo cluster spirals is also examined.

  • PDF

SECULAR EVOLUTION OF BARRED GALAXIES

  • ANN HONG BAE
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.241-248
    • /
    • 2003
  • Owing to several observational evidences and theoretical predictions for morphological evolution of galaxies, it is now widely accepted that galaxies do evolve from late types to early ones along the Hubble sequence. It is also well established that non-axisymmetric potentials of bar-like or oval mass distributions can change the morphology of galaxies significantly during the Hubble time. Here, we review the observational and theoretical grounds of the secular evolution driven by bar-like potentials, and present the results of SPH simulations for the response of the gaseous disks to the imposed potentials to explore the secular evolution in the central regions of barred galaxies.

Gaseous Structures in Barred Galaxies: Effects of the Bar Strength

  • Kim, Woong-Tae;Seo, Woo-Young;Kim, Yonghwi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2012
  • We use hydrodynamic simulations to study the physical properties of gaseous structures in barred galaxies and their relationships with the bar strength. We vary the bar mass fbar relative to the spheroidal component as well as its aspect ratio. We derive expressions for the bar strength Qb and the radius where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have fbar = 0.25-0.5. Dust lanes approximately follow one of x1-orbits and tend to be more straight under a stronger and more elongated bar. A nuclear ring of a conventional x2 type forms only when the bar is not so massive or elongated. The radius of an x2-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Qb, evidencing that the ring position is not determined by the resonance but by the bar strength. Nuclear spirals exist only when the ring is of the x2-type and sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out as being tightly-wound and weak, and then due to the nonlinear effect unwind and become stronger until turning into shocks, with an unwinding rate higher for larger Qb.

  • PDF

Gas Dynamical Evolution of Central Regions of Barred Galaxies

  • Seo, U-Yeong;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • We investigate dynamical evolution of gas in barred galaxies using a high-resolution, grid-based hydrodynamic simulations on two-dimensional cylindrical geometry. Non-axisymmetric gravitational potential of the bar is represented by the Ferrers ellipsoids independent of time. Previous studies on this subject used either particle approaches or treated the bar potential in an incorrect way. The gaseous medium is assumed to be infinitesimally-thin, isothermal, unmagnetized, and initially uniform. To study the effects of various environments on the gas evolution, we vary the gas sound speed as well as the mass of a SMBH located at the center of a galaxy. An introduction of the bar potential produces bar substructure including a pair of dust lane shocks, a nuclear ring, and nuclear spirals. The sound speed affects the position and strength of the bar substructure significantly. As the sound speed increases, the dust lane shocks tend to move closer to the bar major axis, resulting in a smaller-size nuclear ring at the galactocentric radius of about 1 kpc. Nuclear spirals that develop inside a nuclear ring can persist only when either sound speed is low or in the presence of a SMBH; they would otherwise be destroyed by the ring material with eccentric orbits. The mass inflow rates of gas toward the galactic center is also found to be proportional to the sound speed. We find that the sound speed should be 15 km/s or larger if the mass inflow rate is to explain nuclear activities in Seyfert galaxies.

  • PDF

The Molecular Gas Kinematics of HI Monsters

  • Kim, Dawoon E.;Chung, Aeree;Yun, Min S.;Iono, Daisuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2020
  • Our HI monster sample is a set of local HI-rich galaxies identified by the ALFALFA survey (Arecibo Legacy Fast Survey ALFA) at z<0.08. Intriguingly, they are also found with a relatively large molecular gas reservoir compared to the galaxies with similar stellar mass and color, yet their star formation rate is quite comparable to normal spirals. This makes our HI monsters good candidates of galaxies in the process of gas accretion which may lead to the stellar mass growth. One feasible explanation for their relatively low star formation activity for a given high cool gas fraction is the gas in monsters being too turbulent to form stars as normal spirals. In order to verify this hypothesis, we probe the molecular gas kinematics of 10 HI monsters which we observed using the Atacama Large Millimeter/sub-millimeter Array (ALMA). We utilize the tilted ring model to investigate what fraction of the molecular gas in the sample is regularly and smoothly rotating. In addition, we model the molecular gas disk using the GALMOD package of the Groningen Image Processing System (GIPSY) and compare with the observations to identify the gas which is offset from the 'co-planar differential rotation'. Based on the results, we discuss the possibility of gas accretion in the sample, and the potential origin of non-regularly rotating gas and the inefficient star formation.

  • PDF

LUMINOSITY PROFILES OF dE AND dS0 GALAXIES IN THE VIRGO CLUSTER

  • Kim, Kyoo-Hyun;Lee, Kyung-Hoon;Ann, Hong-Bae
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.3
    • /
    • pp.57-71
    • /
    • 2006
  • We investigated the structural parameters of a sample of 30 dwarf galaxies(15 dEs and 15 dS0s) in the Virgo Cluster using i-band images from the Sloan Digital Sky Survey Data Release 4. Among 28 galaxies for which surface brightness profiles were derived from ellipse fittings, 23 galaxies had a single component that was adequately described by a generalized $S\acute{e}rsic$ function with a shape parameter ranging from n=0.5 to 2, while 5 galaxies(2 dEs and 3 dS0s) had bulge and disk components that were fitted by a generalized $S\acute{e}rsic$ function and an exponential function, respectively. Since the majority of dwarf galaxies in the present sample had a single component, it seems likely that genuine dS0 galaxies that have disk and bulge components are quite rare in the Virgo Cluster. The similarity in structural parameters of genuine dS0 galaxies in the Virgo Cluster with those of Magellanic-type galaxies implies that the progenitors of dwarf lenticular galaxies in the Virgo Cluster were most likely Magellanic-type galaxies if dS0s are harassed late-type spirals.

Global Star Formation Efficiency of Local Galaxies

  • Shim, Hyunjin
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.407-414
    • /
    • 2013
  • This study presents the global star formation efficiency (SFE) of 272 local star-forming galaxies based on the HI gas mass, stellar mass, star formation rate (SFR), and morphology. The SFE increases as the stellar mass increases while the specific SFR decreases. The SFE is enhanced for galaxies with large H$\acute{a}$ equivalent widths, which is primarily due to the large SFR, not due to the large available amount of gas. The SFE is also enhanced by a factor of ~2 for merging systems compared to the normal spirals, showing that the merger-induced high pressure and density environment are crucial for the active star formation. Based on the SFR scaling relation, I present a SFR calibration formula using the HI gas mass.