• 제목/요약/키워드: galaxies: formation and evolution

검색결과 235건 처리시간 0.024초

Study of Environmental Impact on the Galaxy Evolution in the Virgo Cluster

  • Lee, Woong;Rey, Soo-Chang;Kim, Suk;Chung, Jiwon;Lee, Youngdae;Chung, Aeree;Yoon, Hyein
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.47.3-48
    • /
    • 2015
  • We present environmental effects on the galaxy evolution in the Virgo cluster focusing on intracluster medium - interstellar medium (ICM-ISM) interactions and gravitational interactions. We identify signatures of these environmental effects for 21 massive late-type galaxies based on the visual inspection of high resolution HI data from VLA Imaging of Virgo spirals in Atomic gas (VIVA) survey comparing with multi-wavelength data. We classify galaxies into three subgroups showing different environmental effects. First and second groups includes galaxies influenced by ongoing/active and past ram pressure stripping effect, respectively. Third group consists of galaxies undergoing gravitational interactions. Additionally, we define neighbor galaxies for each VIVA galaxies utilizing kinematic data from Extended Virgo Cluster Catalog. Assuming that neighbor galaxies share similar levels of environmental effects with host VIVA galaxies, we investigate environmental effects on galaxy properties in different subgroups using SDSS optical and GALEX ultraviolet photometric data. We find that dwarf neighbor galaxies in first and second groups show rapid quenching of their star formation (SF), while massive counterparts are still in SF activity. On the other hand, most third group galaxies show hints of SF activity regardless of their mass. We conclude that SF and evolution of galaxy in the cluster environment is closely linked to ICM-ISM interactions and dwarf galaxies seem to be more sensitive to this effect compared to massive counterparts.

  • PDF

Star-Gas Misalignment in Galaxies: II. Origins Found from the Horizon-AGN Simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.29.1-29.1
    • /
    • 2021
  • There have been many studies aiming to reveal the origins of the star-gas misalignment found in galaxies, but there still is a lack of understanding of the contribution from each formation channel candidate. We explore the properties, origins, and lifetimes of the star-gas misalignment using Horizon-AGN, a large-volume cosmological simulation. First, the misalignment fraction shows a strong anti-correlation with the kinematic morphology (V/sigma) and the cold gas fraction of the galaxy. This result is consistent with the result of integral field spectroscopy observations. Second, we have identified four main formation channels of misalignment and quantified their level of contribution: mergers (35%), interaction with nearby galaxies (23%), interaction with dense environments or their central galaxies (21%), and secular evolution including smooth accretion from neighboring filaments (21%). Third, the decay timescale of the misalignment is strongly linked with the kinematic morphology of the galaxy: early-type galaxies (2.28 Gyr) tend to have a longer misalignment lifetime than LTGs (0.49 Gyr). We also found that the morphology and cold gas fraction are both and independently anti-correlated with the misalignment lifetime.

  • PDF

What Do MIR Properties of Galaxies in the Coma Supercluster Tell Us?

  • 이광호;이명균
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.76.3-77
    • /
    • 2015
  • MIR colors are an excellent tool to investigate the transition phase of galaxy evolution in terms of star formation at various phases. The Coma supercluster is the nearest massive supercluster, hosting two main clusters, the Coma (Abell 1656) and Leo (Abell 1367) clusters, and one galaxy group, the NGC 4555 group, providing an ideal laboratory to study how galaxies evolve depending on environment. We present the results of a study for MIR properties of galaxies in the Coma supercluster using multi-wavelength data from the optical to MIR including the Sloan Digital Sky Survey Data Release 12 and the Wide-field Infrared Survey Explorer. We investigate differences in MIR properties of galaxies among three galaxy systems, and discuss the results in relation with star formation history and morphological transformation of galaxies.

  • PDF

GALAXIES ON DIET: FEEDBACK SIGNATURES IN RADIO-AGN HOST GALAXIES

  • Karouzos, Marios;Im, Myungshin;Trichas, Markos;Goto, Tomogotsu;Malkan, Matthew;Ruiz, Angel;Jeon, Yiseul;Kim, Ji Hoon;Lee, Hyung Mok;Kim, Seong Jin;Oi, Nagisa;Matsuhara, Hideo;Takagi, Toshinobu;Murata, Kazumi;Wada, Takehiko;Wada, Kensuke;Shim, Hyunjin;Hanami, Hitoshi;Serjeant, Stephen;White, Glenn;Pearson, Chris;Ohyama, Youichi
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.201-203
    • /
    • 2017
  • There exists strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. An important mechanism connecting AGN to their host galaxies is AGN feedback, potentially heating up or even expelling gas from galaxies. AGN feedback may hence be responsible for the eventual quenching of star formation and halting of galaxy growth. A rich multi-wavelength dataset ranging from the X-ray regime (Chandra), to far-IR (Herschel), and radio (WSRT) is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope, covering a total area on the sky of 5.4 sq. degrees. We investigate the star formation properties and possible signatures of radio feedback mechanisms in the host galaxies of 237 radio sources below redshift z = 2 and at a radio 1.4 GHz flux density limit of 0.1 mJy. Using broadband SED modelling, the nuclear and host galaxy components of these sources are studied simultaneously as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this field, while also offering evidence showcasing a link between AGN activity and host galaxy star formation. In particular, we show results supporting a maintenance type of feedback from powerful radio-jets.

CORE AND GLOBAL PROPERTIES OF EARLY-TYPE GALAXIES AND THEIR GLOBULAR CLUSTER SYSTEMS

  • Cote, Patrick;The Acs Virgo And Fornax Cluster Survey Teams, The Acs Virgo And Fornax Cluster Survey Teams
    • 천문학논총
    • /
    • 제25권3호
    • /
    • pp.59-64
    • /
    • 2010
  • The core and global properties of the early-type ("red sequence") galaxies in the Virgo and Fornax clusters are examined using high-quality HST/ACS imaging for 143 galaxies. Rather than dividing neatly into disparate populations having distinct formation and/or evolution histories, many of the core and global properties of these galaxies show smooth and systematic variations along the galaxy luminosity function. The few examples of the rare class of compact elliptical galaxies in our sample all show properties that are strongly suggestive of tidal stripping by massive galaxies; if so, then these systems should not be viewed as populating the low-luminosity extension of so-called "normal" elliptical sequences. These results demonstrate that complete and/or unbiased samples are a pre-requisite for identifying the physical mechanisms that gave rise to the early-type galaxies we observe locally, and how these mechanisms varied with mass and environment.

Comparison between the Pair Fractions of Dark Matter Halos and Galaxies in Cosmological Simulations

  • An, Sung-Ho;Kim, Juhan;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.69.1-69.1
    • /
    • 2016
  • We investigate the pair fractions of dark matter halos and galaxies in cosmological simulations. The cosmological simulations are performed by a tree-particle-mesh code GOTPM (Grid-of-Oct-Tree-Particle-Mesh) and the dark matter halos are identified by a halo finding algorithm PSB (Physically Self-Bound). The 'galaxy' pair fractions are obtained from galaxy catalogues of L-Galaxies semi-analytical galaxy formation runs in the Millennium database. We present and compare the pair fractions of the dark matter halos and galaxies as functions of redshifts, halo masses and ambient environments.

  • PDF

The Relative Role of Bars and Galaxy Environments in AGN Triggering of SDSS Spirals

  • Choi, Yun-Young;Kim, Minbae
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.31.3-32
    • /
    • 2021
  • We quantify the relative role of galaxy environment and bar presence on AGN triggering in face-on spiral galaxies using a volume-limited sample with 0.02 < z < 0.055, Mr < 19.5, and σ > 70 km s-1 selected from Sloan Digital Sky Survey (SDSS) Data Release 7. To separate their possible entangled effects, we divide the sample into bar and non-bar samples, and each sample is further divided into three environment cases of isolated galaxies, interacting galaxies with a pair, and cluster galaxies. The isolated case is used as a control sample. For these six cases, we measure AGN fractions at a fixed central star formation rate and central velocity dispersion, σ. We demonstrate that the internal process of the bar-induced gas inflow is more efficient in AGN triggering than the external mechanism of the galaxy interactions in groups and cluster outskirts. The significant effects of bar instability and galaxy environments are found in galaxies with a relatively less massive bulge. We conclude that from the perspective of AGN-galaxy coevolution, a massive black hole is one of the key drivers of spiral galaxy evolution. If it is not met, a bar instability helps the evolution, and in the absence of bars, galaxy interactions/mergers become important. In other words, in the presence of a massive central engine, the role of the two gas inflow mechanisms is reduced or almost disappears. We also find that bars in massive galaxies are very decisive in increasing AGN fractions when the host galaxies are inside clusters.

  • PDF

A RELATION BETWEEN ACTIVE BLACK HOLES AND STAR FORMATION OF LOCAL ACTIVE GALAXIES

  • MATSUOKA, KENTA;WOO, JONG-HAK;BAE, HYUN-JIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.341-343
    • /
    • 2015
  • We present an analysis of the relation between star-formation (SF) and accretion luminosities of local type-2 active galactic nuclei (AGNs) at $0.01{\leq}z<0.22$. We match type-2 AGNs found in the Sloan Digital Sky Survey to current far-infrared (FIR) survey catalogues based on AKARI and Herschel. Estimating AGN luminosities from [$O{\small{III}}$]${\lambda}5007$ and [$O{\small{I}}$]${\lambda}6300$ emission lines, we find a positive linear trend between FIR and AGN luminosities over a wide dynamical range. This result appears to be inconsistent with recent reports that low-luminosity AGNs show no correlation between FIR and X-ray luminosities; this contradiction is likely due to Malmquist and sample selection biases. Moreover, we also find that pure-AGN candidates, for which the FIR radiation is thought to be AGN-dominated, show significant low-SF activities. These AGNs hosted by low-SF galaxies are rare in our sample. However, it is possible that the low fraction of low-SF AGN is caused by observational limitations, as recent FIR surveys are not sufficient to examine the population of high-luminosity AGNs hosted by low-SF galaxies.

ON THE IMPORTANCE OF USING APPROPRIATE SPECTRAL MODELS TO DERIVE PHYSICAL PROPERTIES OF GALAXIES

  • PACIFICI, CAMILLA;DA CUNHA, ELISABETE;CHARLOT, STEPHANE;YI, SUKYOUNG
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.535-537
    • /
    • 2015
  • Interpreting ultraviolet-to-infrared (UV-to-IR) observations of galaxies in terms of constraints on physical parameters-such as stellar mass ($M_{\ast}$) and star formation rate (SFR)-requires spectral synthesis modelling. We investigate how increasing the level of sophistication of the standard simplifying assumptions of such models can improve estimates of galaxy physical parameters. To achieve this, we compile a sample of 1048 galaxies at redshifts 0.7 < z < 2.8 with accurate photometry at rest-frame UV to near-IR wavelengths from the 3D-HST Survey. We compare the spectral energy distributions of these galaxies with those from different model spectral libraries to derive estimates of the physical parameters. We find that spectral libraries including sophisticated descriptions of galaxy star formation histories (SFHs) and prescriptions for attenuation by dust and nebular emission provide a much better representation of the observations than 'classical' spectral libraries, in which galaxy SFHs are assumed to be exponentially declining functions of time, associated with a simple prescription for dust attenuation free of nebular emission. As a result, for the galaxies in our sample, $M_{\ast}$ derived using classical spectral libraries tends to be systematically overestimated and SFRs systematically underestimated relative to the values derived adopting a more realistic spectral library. We conclude that the sophisticated approach considered here is required to reliably interpret fundamental diagnostics of galaxy evolution.

The impact of ram pressure on the multi-phase ISM probed by the TIGRESS simulation

  • Choi, Woorak;Kim, Chang-Goo;Chung, Aeree
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.62.1-62.1
    • /
    • 2018
  • Galaxies in the cluster environment interact with the intracluster medium (ICM), losing the interstellar medium (ISM) and alternating their evolution. Observational evidences of the extraplanar ISM stripped by the ICM's ram pressure are prevalent in HI imaging studies of cluster galaxies. However, current theoretical understanding of the ram pressure stripping (or ICM-ISM interaction in general) is still limited mainly due to the lack of numerical resolution at ISM scales in large-scale simulations. Especially, self-consistent modeling of the turbulent, multiphase ISM is critical to understand star formation in galaxies interacting with the ICM. To achieve this goal, we utilize the TIGRESS simulation suite, simulating a local patch of galactic disks with high resolution to resolve key physical processes in the ISM, including cooling/heating, self-gravity, MHD, star formation, and supernova feedback. We then expose the ISM disk to ICM flows and investigate the evolution of star formation rate and the properties of the ISM. By exploring ICM parameter space, we discuss an implication of the simple ram pressure stripping condition (so called the Gunn-Gott condition) to the realistic ISM.

  • PDF