• Title/Summary/Keyword: galaxies: formation and evolution

Search Result 235, Processing Time 0.027 seconds

Radiation-hydrodynamic simulations of ram pressure strippin on star-forming galaxies

  • Lee, Jaehyun;Kimm, Taysun;Katz, Haley
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2018
  • Recent observational studies suggest that the environmental effects can shape the evolution of galaxies in clusters. In an attempt to better understand this process, we perform idealized radiation-hydrodynamic simulations of RAM pressure stripping on star-forming galaxies using RAMSES-RT. We find that extended HI disks are easily stripped by moderate ICM winds, while there is no significant decrease in the total mass of molecular gas. RAM pressure tends to compress the molecular gas, leading to enhanced star formation especially when the gaseous disk is hit by edge-on winds. On the other hand, strong ICM winds that are expected to operate at the centre of clusters strip both HI and molecular gas from the galaxy. Interestingly, we find that the strong ICM winds can induce the formation of relatively dense (~1H/cc) HI gas clouds at a distance from the disk.

  • PDF

Direct effects of the environment on AGN triggering in SDSS spiral galaxies: merger-AGN connection

  • Minbae Kim;Yun-Young Choi;Sungsoo S Kim
    • Monthly Notices of the Royal Astronomical Society
    • /
    • v.491 no.3
    • /
    • pp.4045-4056
    • /
    • 2020
  • We examine whether galaxy environments directly affect triggering nuclear activity in Sloan Digital Sky Survey (SDSS) local spiral galaxies using a volume-limited sample with the r-band absolute magnitude Mr < -19.0 and 0.02 <z< 0.055 selected from the SDSS Data Release 7. To avoid incompleteness of the central velocity dispersion σ of the volume-limited sample and to fix the black hole mass affecting AGN activity, we limit the sample to a narrow σ range of 130 km s-1 <σ< 200 km s-1. We define a variety of environments as a combination of neighbour interactions and local density on a galaxy. After the central star formation rate (which is closely related to AGN activity level) is additionally restricted, the direct impact of the environment is unveiled. In the outskirts of rich clusters, red spiral galaxies show a significant excess of the AGN fraction despite the lack of central gas. We argue that they have been pre-processed before entering the rich clusters, and due to mergers or strong encounters in the in-fall region, their remaining gases efficiently lose angular momentum. We investigate an environment in which many star-forming galaxies coexist with a few starburst-AGN composite hosts having the highest [OIII] luminosity. We claim that they are a gas-rich merger product in groups or are group galaxies in-falling into clusters, indicating that many AGN signatures may be obscured following the merger events.

Environmental Dependence of Galactic conformity in the Virgo Cluster

  • Lee, Hye-Ran;Lee, Joon Hyeop;Jeong, Hyunjin;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.77.3-78
    • /
    • 2015
  • It is known that the galaxy evolution by direct interaction between galaxies is most active in a galaxy group. As a result, the satellite galaxies are closely related to their central galaxy in properties such as morphology, color and star formation rate (so-called 'galactic conformity'). However, it is not clear yet whether such conformity between galaxies is found in a galaxy cluster. Recently, Lee et al. (2014) have found a measurable correlation between the colors of bright galaxies and the mean colors of their faint companions in a cluster WHL J085910.0+294957 at z = 0.3, using the photometrically-selected cluster members. They suggest that such correlation may be the vestige of infallen groups in the cluster as one possibility. In order to confirm the small-scale conformity in galaxy clusters with higher reliability, we study the Virgo cluster using the Extended Virgo Cluster Catalog (EVCC). The cluster members are selected spectroscopically unlike in WHL J085910.0+294957. We examine the galactic conformity in two distinct areas of the Virgo cluster: the inner X-ray emission region and its outer region. We find a marginal conformity in color (> $2{\sigma}$ significance to bootstrap uncertainty) in the outer region, while no meaningful signal of small-scale conformity is detected in the X-ray emission region. We discuss the implication of this result, focusing on cluster mass assembly and cluster environmental effects on galaxy evolution.

  • PDF

PANORAMIC MID-INFRARED VIEWS OF DISTANT CLUSTERS OF GALAXIES WITH AKARI

  • Koyama, Yusei
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.287-291
    • /
    • 2017
  • We present the results of our mid-infrared (MIR) observations of distant clusters of galaxies with AKARI. The wide-field of view of IRC/AKARI ($10^{\prime}{\times}10^{\prime}$) is ideally suited for studying dust-obscured star-formation (SF) activity of galaxies along the cosmic web in the distant universe. We performed a deep and wide-field $15{\mu}m$ (rest-frame ${\approx}8{\mu}m$) imaging observation of the RXJ1716+6708 cluster (z = 0.81) with IRC. We find that $15{\mu}m$-detected cluster member galaxies (with total infrared luminosities of $L_{IR}{\geq}10^{11}L_{\odot}$) are most preferentially located in the cluster outskirt regions, whilst such IR-luminous galaxies avoid the cluster centre. Our $H{\alpha}$ follow-up study of this field confirmed that a significant fraction of $15{\mu}m$-detected cluster galaxies are heavily obscured by dust (with $AH{\alpha}$>3 mag in extreme cases). The environment of such dusty star-burst galaxies coincides with the place where we see a sharp "break" of the colour-density relation, suggesting an important link between dust-obscured SF activity and environmental quenching. We also report the discovery of a new cluster candidate around a radio galaxy at z = 1.52 (4C 65.22), where we obtained one of the deepest IRC imaging datasets with all the nine filters at $2-24{\mu}m$. This field will provide us with the final, excellent laboratory for studying the dust-enshrouded SF activity in galaxies along the cosmic web at the critical epoch of cluster galaxy evolution with AKARI.

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

PROBING GALAXY FORMATION MODELS IN COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS OF GALAXY GROUPS

  • HABIB. G., KHOSROSHAHI;GOZALIASL, GHASSEM;FINOGUENOV, ALEXIS;RAOUF, MOJTABA;MIRAGHEE, HALIME
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.349-353
    • /
    • 2015
  • We use multi-wavelength observations of galaxy groups to probe the formation models for galaxy formation in cosmological simulations, statistically. The observations include Chandra and XMM-Newton X-ray observations, optical photometry and radio observations at 1.4 GHz and 610 MHz. Using a large sample of galaxy groups observed by the XMM-Newton X-ray telescope as part of the XMM-Large Scale Survey, we carried out a statistical study of the redshift evolution of the luminosity gap for a well defined mass-selected group sample and show the relative success of some of the semi-analytic models in reproducing the observed properties of galaxy groups up to redshift z ~ 1.2. The observed trend argues in favour of a stronger evolution of the feedback from active galactic nuclei at z < 1 compared to the models. The slope of the relation between the magnitude of the brightest cluster galaxy and the value of the luminosity gap does not evolve with redshift and is well reproduced by the models. We find that the radio power of giant elliptic galaxies residing in galaxy groups with a large luminosity gap are lower compared to giant ellipticals of the same stellar masses but in typical galaxy groups.

Extragalactic Science with ALMA: First Results & Future Perspectives

  • Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.118.2-118.2
    • /
    • 2014
  • As the most sensitive radio interferometer ever operated in millimeter/submillimeter, the ALMA has opened a new window on extragalactic astronomy. Its superior resolution and sensitivity allow the community to study the gas kinematics of distant galaxies as well as the molecular gas properties of nearby galaxies in GMC scale, already in its early commissioning stage. Also the ALMA provides a great tool to probe the dust contents of extragalactic sources at all redshifts, which is important in understanding of galaxy formation and evolution history over cosmic time. In this presentation, I will review the ALMA capabilities with the emphasis on the extragalactic science. I will also revisit some highlights from the early science and discuss future perspectives.

  • PDF

Infrared Space Missions in Korea for the Astronomical Research

  • Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.27.2-27.2
    • /
    • 2021
  • The unknown excess emission in the near-infrared is thought to be related to the evolution of galaxies in the early epoch of Universe. Due to its extremely faint brightness, it can be observed only in space. Many infrared space missions have been tried to trace the origin of the Cosmic Infrared Background through the measurement of its absolute brightness and its spatial fluctuation. In addition, the infrared observations can address questions ranging from the origin of first galaxies in the Universe to the formation of stars. I will overview the Korean infrared space missions and introduce the status of the recent international collaboration mission, SPHEREx.

  • PDF

Merging Features and Optical-NIR Color Gradient of Early-type Galaxies

  • Kim, Du-Ho;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies (ETGs). Optical-NIR color gradients of ETGs in high density environments are found to be less steep than those of ETGs in low density environments, hinting frequent merger activities in ETGs in high density environments. In order to examine if the flat color gradients are the result of dry mergers, we studied the relations between merging features, color gradient, and environments of 281 low redshift ETGs selected from Sloan Digital Sky Survey (SDSS) Stripe82. The sample contains 222 relaxed ETGs, 38 ETGs with tidal features, 10 galaxies with dust features and 11 galaxies with tidal and dust features, and Near Infrared (NIR) images are taken from UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We find that r-K color gradients of field sample galaxies are steeper than those of sample ETGs within cluster environments. For the field sample galaxies, a relatively large number of galaxies with peculiar features contribute to the steeper color gradients, while the absence of these peculiar early-type galaxies make color gradients of the cluster sample galaxies intact. In high density environment, ETGs are already evolved and relaxed, resulting flat color gradients. However, in low density environments, a majority of ETGs undergone merging recently which makes the color gradients steep.

  • PDF

GALAXY SED FITTING FROM AKARI TO HERSCHEL: 0.7 < z < 4 SUB-MILLIMETER LYMAN BREAK GALAXIES IN INFRARED

  • Burgarella, D.;The PEP-HerMES-COSMOS team, The PEP-HerMES-COSMOS team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.311-316
    • /
    • 2012
  • Lyman break Galaxies are galaxies selected in the rest-frame ultraviolet. But, one important and missing information for these Lyman break galaxies is the amount of dust attenuation. This is crucial to estimate the total star formation rate of this class of objects and, ultimately, the cosmic star formation density. AKARI, Spitzer and Herschel are therefore the major facilities that could provide us with this information. As part of the Herschel Multi-tiered Extragalactic Survey, we have began investigating the rest-frame far-infrared properties of a sample of more than 4,800 Lyman Break Galaxies in the GOODS-North fiels. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z <1.6 and one object at z = 2.0. The ones detected by Herschel SPIRE have redder observed NUV-U and U-R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. We have analysed their UV-to-FIR spectral energy distributions using the code cigale to estimate their physical parameters. We find that LBGs detected by SPIRE are high mass, luminous infrared galaxies. They also appear to be located in a triangle-shaped region in the $A_{FUV}$ vs. $logL_{FUV}$ diagram limited by $A_{FUV}$ = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom-right to the top-left of the diagram. In a second step, we move to the larger COSMOS field where we have been able to detect 80 Lyman break galaxies (out of ~ 15,600) in the far infrared. They form the largest sample of Lyman break galaxies at z > 2.5 detected in the far-infrared. We tentatively name them Submillimeter Lyman break galaxies (S-LBGs).