• Title/Summary/Keyword: galaxies: dynamics

Search Result 49, Processing Time 0.021 seconds

THE VIRIAL RELATION AND INTRINSIC SHAPE OF EARLY-TYPE GALAXIES

  • TRIPPE, SASCHA
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.5
    • /
    • pp.193-198
    • /
    • 2016
  • Early-type galaxies (ETGs) are supposed to follow the virial relation $M=k_e{\sigma}^2R_e/G$, with M being the mass, σ* being the stellar velocity dispersion, Re being the effective radius, G being Newton's constant, and ke being the virial factor, a geometry factor of order unity. Applying this relation to (a) the ATLAS3D sample of Cappellari et al. (2013) and (b) the sample of Saglia et al. (2016) gives ensemble-averaged factors 〈ke〉 = 5.15 ± 0.09 and 〈ke〉 = 4.01 ± 0.18, respectively, with the difference arising from different definitions of effective velocity dispersions. The two datasets reveal a statistically significant tilt of the empirical relation relative to the theoretical virial relation such that $M{\propto}({\sigma}^2_*R_e)^{0.92}$. This tilt disappears when replacing Re with the semi-major axis of the projected half-light ellipse, a. All best-fit scaling relations show zero intrinsic scatter, implying that the mass plane of ETGs is fully determined by the virial relation. Whenever a comparison is possible, my results are consistent with, and confirm, the results by Cappellari et al. (2013). The difference between the relations using either a or Re arises from a known lack of highly elliptical high-mass galaxies; this leads to a scaling (1 - ϵ ) ∝ M0.12, with ϵ being the ellipticity and $R_e=a\sqrt[]{1-{\epsilon}}$. Accordingly, a, not Re, is the correct proxy for the scale radius of ETGs. By geometry, this implies that early-type galaxies are axisymmetric and oblate in general, in agreement with published results from modeling based on kinematics and light distributions.

Probing galactic and intergalactic magnetic fields using Faraday tomography (optionally title in Korean in parentheses)

  • Ideguchi, Shinsuke;Takahashi, Keitaro;Akahori, Takuya;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.31.1-31.1
    • /
    • 2015
  • For probing magnetic fields in the universe, rotation measure (RM) have been often used. RM allows us to obtain the information of integrated (or averaged) magnetic fields along a line of sight (LOS). On the other hand, the new technique so-called Faraday tomography will be used in practical in the near future thanks to the wide-band polarimetry by Square kilometre Array and/or its precursors. The technique allows us to obtain so-called Faraday dispersion function (FDF). FDF is the distribution function of magnetic fields and polarized sources along a LOS. Because of this fact, it is expected that the studies of magnetic fields associated with various astronomical objects will progress dramatically. Since FDF also includes information of cosmic-rays and thermal electrons, the investigation of FDF may advance the studies of dynamics of external galaxies and/or the star formation activities. We have studied the potentials of Faraday tomography such as a tool to probe the intergalactic magnetic field associated with filaments of galaxies in the large scale structure. We have also studied the realistic FDFs of galaxies for understanding global magnetic field, cosmic-ray and thermal electrons of external galaxies. In the talk, we briefly introduce the Faraday tomography technique and report the results related to the Faraday tomography.

  • PDF

A DERIVATION OF MODIFIED NEWTONIAN DYNAMICS

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.93-96
    • /
    • 2013
  • Modified Newtonian Dynamics (MOND) is a possible solution for the missing mass problem in galactic dynamics; its predictions are in good agreement with observations in the limit of weak accelerations. However, MOND does not derive from a physical mechanism and does not make predictions on the transitional regime from Newtonian to modified dynamics; rather, empirical transition functions have to be constructed from the boundary conditions and comparisons with observations. I compare the formalism of classical MOND to the scaling law derived from a toy model of gravity based on virtual massive gravitons (the "graviton picture") which I proposed recently. I conclude that MOND naturally derives from the "graviton picture" at least for the case of non-relativistic, highly symmetric dynamical systems. This suggests that-to first order-the "graviton picture" indeed provides a valid candidate for the physical mechanism behind MOND and gravity on galactic scales in general.

A SIMPLIFIED TREATMENT OF GRAVITATIONAL INTERACTION ON GALACTIC SCALES

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • I present a simple scheme for the treatment of gravitational interactions on galactic scales. In anal- ogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles-gravitons-with very small but non-zero masses. The resulting den- sity and mass profiles are proportional to the mass of the gravitating body. The mass profile scales with the centripetal acceleration experienced by a test particle orbiting the central mass, but this comes at the cost of postulating a universal characteristic acceleration $a_0{\approx}4.3{\times}10^{-12}msec^{-2}$ (or $8{\pi}a_0{\approx}1.1{\times}10^{-10}msec^{-2}$). The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, the surface brightness-acceleration relation of galaxies, the kinematics of galaxy clusters, and "Renzo's rule" correctly; additional (dark) mass components are not required. Given that it is based on various ad-hoc assumptions and given further limitations, the scheme I present is not yet a consistent theory of gravitation; rather, it is a "toy model" providing a convenient scaling law that simplifies the description of gravity on galactic scales.

STREAMING CIRCUMNUCLEAR GAS OF THE SEYFERT 2 GALAXY NGC 5728

  • Son, Dong-Hoon;Hyung, Siek;Lee, Seong-Jae;Ferruit, Pierre
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.5
    • /
    • pp.125-134
    • /
    • 2009
  • We investigated the circumnuclear region of the Seyfert 2 galaxy NGC 5728, using the CFHT 3.6 m OASIS $[S_{II}]$, $[O_{III}]$ & $H\beta$ spectral images complemented with the IUE spectra. The physical condition of the circumnuclear zone has been derived: the gas density (indicated by $[S_{II}]$6716/31 ratio) around the C core is generally similar to that around the NW core, i.e., $\sim500cm^{-3}$. However, there appears to be evidence of a higher density shell in front of the NW core, $\sim10^4cm^{-3}$ at -250 km $s^-1$. The IUE $Si_{III}$]1892/$C_{III}$]1909 ratio implies a possible presence of a broad emission region of gas densities of $\sim10^{10}cm^{-3}$. The SE cone and surrounding area show several prominent features, while the NW cone does not show any particular structure: we identified three prominent blobs in the SE cone and one possible candidate in the NW cone. The outflow activities exist within the relatively large conic opening angle. We discussed the possibility of inflow or outflow activities of blobs found in the circumnuclear region of NGC 5728. The gas around two cores, two cones, and several blobs, is likely to be excited by the AGN hot source(s).

TURBULENCE IN THE OUTSKIRTS OF THE MILKY WAY

  • Sanchez-Salcedo, F.J.;Santillan, A.;Franco, Jose
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In external galaxies, the velocity dispersion of the atomic hydrogen gas shows a remarkably flat distribution with the galactocentric radius. This has been a long-standing puzzle because if the gas velocity dispersion is due to turbulence caused by supernova explosions, it should decline with radius. After a discussion on the role of spiral arms and ram pressure in driving interstellar turbulence in the outer parts of galactic disks, we argue that the constant bombardment by tiny high-velocity halo clouds can be a significant source of random motions in the outer disk gas. Recent observations of the flaring of H I in the Galaxy are difficult to explain if the dark halo is nearly spherical as the survival of the streams of tidal debris of Sagittarius dwarf spheroidal galaxy suggests. The radial enhancement of the gas velocity dispersion (at R > 25 kpc) due to accretion of cloudy gas might naturally explain the observed flaring in the Milky Way. Other motivations and implications of this scenario have been highlighted.

Impact of Lyman alpha pressure on metal-poor dwarf galaxies

  • Kimm, Taysun;Haehnelt, Martin;Blaizot, Jeremy;Katz, Harley;Michel-Dansac, Leo;Garel, Thibault;Rosdahl, Joakim;Teyssier, Romain
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2018
  • Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy, we show that the momentum transferred from resonantly scattered Lyman-alpha(LyA) photons can suppress star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each LyA photon resonantly scatters and imparts ~10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ~5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong LyA radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ~5-10 near the mid-plane, while it is reduced to ~1 at larger radii.

  • PDF

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.

A Study of Halo-Galaxy Correspondence from the Horizon Run 4

  • Park, Jisook;Kim, Juhan;Park, Changbom;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.50.2-50.2
    • /
    • 2015
  • The Horizon Run 4 is a huge cosmological simulation intended for the study of evolution of dark matter halos in a side of volume of 3150 h-1 Mpc. Using the halo merger trees of most bound particles, we test various models on the survivals of satellites in clusters and will compare them with observed satellite galaxies in a one-to-one correspondence model. We estimate the abundances of central and satellite subhalos, and compare them with the SDSS main-galaxy group catalogue provided by Tempel et al. (2014). Based on these comparisons we will study the mass-to-light relations, environmental effects on morphology and luminosity function, halo occupations in clusters, and nonlinear dynamics of clusters of galaxies.

  • PDF

Dealing with gravity on galactic scales

  • Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2013
  • I present a simple scheme for the treatment of gravitational interactions on galactic scales. In analogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles - gravitons - with very small but non-zero masses. The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, and the surface brightness-acceleration relation of galaxies correctly; additional (dark) mass components are not required. The well-established empirical scaling laws of Modified Newtonian Dynamics follow naturally from the model. The scheme I present is not a consistent theory of gravitation; rather, it is a toy model providing a convenient scaling law that simplifies the description of gravity on galactic scales.

  • PDF