• Title/Summary/Keyword: galaxies: clustering

Search Result 46, Processing Time 0.029 seconds

GALAXY CORRELATION IN A BUBBLY UNIVERSE

  • Ryu, Dong-Su
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 1992
  • Recent redshift surveys suggest that most galaxies may be distributed on the surfaces of bubbles surrounding large voids. To investigate the quantitative consistency of this qualitative picture of large-scale structure, we study analytically the clustering properties of galaxies in a universe filled with spherical shells. In this paper, we report the results of the calculations for the spatial and angular two-point correlation functions of galaxies. With ${\sim}20%$ of galaxies in clusters and a power law distribution of shell sizes, $n_{sh}(R){\sim}R^{-{\alpha}}$, ${\alpha}\;{\simeq}\;4$, the observed slope and amplitude of the spatial two-point correlation function ${\xi}_{gg}(r)$ can be reproduced. (It has been shown that the same model parameters reproduce the enhanced cluster two-point correlation function, ${\xi}_{cc}(r)$). The corresponding angular two-point correlation function $w({\theta})$ is calculated using the relativistic form of Limber's equation and the Schecter-type luminosity function. The calculated w(${\theta}$) agrees with the observed one quite well on small separations (${\theta}{\lesssim}2deg$).

  • PDF

CORRELATION FUNCTIONS OF THE APM CLUSTERS OF GALAXIES

  • PARK CHANGBOM;LEE SUNGHO
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.105-108
    • /
    • 1998
  • We have found that the two-point correlation function of the APM clusters of galaxies has an amplitude much higher than that claimed by the APM group. As the richness limit increases from R = 53 to 80, the correlation length increases from 17.5 to 28.9 $h^{-1}Mpc$. This indicates that the richness dependence of the APM cluster correlation function is also much stronger than what the APM group has reported. The richness dependence can be represented by a fitting formula ro = 0.53dc + 0.01, which is consistent with the Bahcall's formula ro = 0.4dc. We have tried to find the possible reason for discrepancies. However, our estimates for the APM cluster correlation function are found to be robust against variation of the method of calculation and of sample definition.

  • PDF

Redshift Space Distortion on the Small Scale Clustering of Structure

  • Park, Hyunbae;Sabiu, Cristiano;Li, Xiao-dong;Park, Changbom;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.78.3-78.3
    • /
    • 2017
  • The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. The shape of the two-point correlation of galaxies exhibits a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. In our previous works, we can made use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This current work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities. We now aim to understand the redshift evolution of the full shape of the small scale, anisotropic galaxy clustering and give a firmer theoretical footing to our previous works.

  • PDF

Testing Gravity with Cosmic Shear Data from the Deep Lens Survey

  • Sabiu, Cristiano G.;Yoon, Mijin;Jee, M. James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.62.2-62.2
    • /
    • 2018
  • From the gaussian, near scale-invariant density perturbations observed in the CMB to the late time clustering of galaxies, CDM provides a minimal theoretical explanation for a variety of cosmological data. However accepting this explanation, requires that we include within our cosmic ontology a vacuum energy that is ~122 orders of magnitude lower than QM predictions, or alternatively a new scalar field (dark energy) that has negative pressure. Alternatively, modifications to Einstein's General Relativity have been proposed as a model for cosmic acceleration. Recently there have been many works attempting to test for modified gravity using the large scale clustering of galaxies, ISW, cluster abundance, RSD, 21cm observations, and weak lensing. In this work, we compare various modified gravity models using cosmic shear data from the Deep Lens Survey as well as data from CMB, SNe Ia, and BAO. We use the Bayesian Evidence to quantify the comparison robustly, which naturally penalizes complex models with weak data support. In this poster we present our methodology and preliminary constraints on f(R) gravity.

  • PDF

THE VELOCITY INHOMOGENEITY IN THE COMA CLUSTER OF GALAXIES

  • KIM KWANG TAE
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.15-30
    • /
    • 1995
  • A velocity inhomogeneity, which is defined as a regional preponderence of either radial or tangential orbits, is searched with a new technique for the Coma cluster of galaxies. It is found within $\~2h^{-1}$ Mpc from the cluster center that the Coma shows conspicuous inhomogeneities in velocity and that the inhomogeneities are real at a $99\%$ level of confidence. Even in the central region (7' - 30' from the center), zones that are dominated by radial and tangential orbits are distinguishable. Defining the cluster's 'equator' as the direction defined by the Coma-A1367 supercluster, tangential orbits dominate the 'polar' zones in the central region. Galaxies that are located in 30'-100' also inhomogeneous in velocity in that the 'polar' zones are mostly radial while the rest is nearly homogeneous. These results indicate that the Coma galaxies are exceedingly more radial in orbit, implying that merging or infalls are either still going on or an earlier virialization is likely to have occurred preferentially near the 'equator'. Incorporating the velocity inhomogeneity into mass estimators, the most appropriate mass is turned out to be $0.4\times10^{15}h^{-1}M_\bigodot(R\;\leq\;0.6h^{-1} Mpc),\;and\;1.0\times10^{15}h^{-1} M_\bigodot(R\;\leq\;2.1h^{-1}Mpc)$. The corresponding mass to blue light ratio on the average is $\~$300h. These estimates are consistent with Merritt (1987) and Hughes (1989) and the MILE is seemed to favour the mass-follows-light models than the uniform spread of dark matter throughout the cluster.

  • PDF

The Joint analysis of galaxy clustering and weak lensing from the Deep Lens Survey to constrain cosmology and baryonic feedback

  • Yoon, Mijin;Jee, M. James;Tyson, J. Tony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2019
  • Based on three types of 2-point statistics (galaxy clustering, galaxy-galaxy lensing, and cosmic shear power spectra) from the Deep Lens Survey (DLS), we constrain cosmology and baryonic feedback. The DLS is a deep survey, so-called a precursor to LSST, reaching down to ~27th magnitude in BVRz' over 20 deg2. To measure the three power spectra, we choose two lens galaxy populations centered at z ~0.27 and 0.54 and two source galaxy populations centered at z ~0.64 and 1.1, with more than 1 million galaxies. We perform a number of consistency tests to confirm the reliability of the measurements. We calibrated photo-z estimation of the lens galaxies and validated the result with galaxy cross-correlation measurement. The B-mode signals, indicative of potential systematics, are found to be consistent with zero. The two cosmological results independently obtained from the cosmic shear and the galaxy clustering + galaxy-galaxy lensing measurements agree well with each other. Also, we verify that cosmological results between bright and faint sources are consistent. While there exist some weak lensing surveys showing a tension with Planck, the DLS constraint on S8 agrees nicely with the Planck result. Using the HMcode approach derived from the OWLS simulation, we constrain the strength of baryonic feedback. The DLS results hint at the possibility that the actual AGN feedback may be stronger than the one implemented in the current state-of-the-art simulations.

  • PDF

CORRELATION FUNCTIONS OF THE ABELL, APM, AND X-RAY CLUSTERS OF GALAXIES

  • LEE SUNGHO;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.111-121
    • /
    • 2002
  • We have measured the correlation functions of the optically selected clusters of galaxies in the Abell and the APM catalogs, and of the X-ray clusters in the X-ray-Brightest Abell-type Clusters of galaxies (XBACs) catalog and the Brightest Clusters Sample (BCS). The same analysis method and the same method of characterizing the resulting correlation functions are applied to all observational samples. We have found that the amplitude of the correlation function of the APM clusters is much higher than what has been previously claimed, in particular for richer subsamples. The correlation length of the APM clusters with the richness R $\ge$ 70 (as defined by the APM team) is found to be $r_0 = 25.4_{-3.0}^{+3.1}\;h^{-1}$ Mpc. The amplitude of correlation function is about 2.4 times higher than that of Croft et al. (1997). The correlation lengths of the Abell clusters with the richness class RC $\ge$ 0 and 1 are measured to be $r_0 = 17.4_{-1.1}^{+1.2}$ and $21.0_{-2.8}^{+2.8}\;h^{-1}$ Mpc, respectively, which is consistent with our results for the APM sample at the similar level of richness. The richness dependence of cluster correlations is found to be $r_0= 0.40d_c + 3.2$ where $d_c$ is the mean intercluster separation. This is identical in slope with the Bahcall & West (1992)'s estimate, but is inconsistent with the weak dependence of Croft et al. (1997). The X-ray bright Abell clusters in the XBACs catalog and the X-ray selected clusters in the BCS catalog show strong clustering. The correlation length of the XBACs clusters with $L_x {\ge}0.65{\times} 10^{44}\;h^{-2}erg\;s^{-1}$ is $30.3_{-6.5}^{+8.2}\;h^{-1}$ Mpc, and that of the BCS clusters with $L_x {\ge}0.70{\times} 10^{44}\;h^{-2}erg\;s^{-1}$ is $30.2_{-8.9}^{+9.8}\;h^{-1}$ Mpc. The clustering strength of the X-ray clusters is much weaker than what is expected from the optical clusters.

Detecting the Baryon Acoustic Oscillations in the N-point Spatial Statistics of SDSS Galaxies

  • Hwang, Se Yeon;Kim, Sumi;Sabiu, Cristiano G.;Park, In Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.72.3-73
    • /
    • 2021
  • Baryon Acoustic Oscillations (BAO) are caused by acoustic density waves in the early universe and act as a standard ruler in the clustering pattern of galaxies in the late Universe. Measuring the BAO feature in the 2-point correlation function of a sample of galaxies allows us to estimate cosmological distances to the galaxies mean redshift, , which is important for testing and constraining the cosmology model. The BAO feature is also expected to appear in the higher order statistics. In this work we measure the generalized spatial N-point point correlation functions up to 4th order. We made measurements of the 2, 3, and 4-point correlation functions in the SDSS-III DR12 CMASS data, comprising of 777,202 galaxies. The errors and covariances matrices were estimated from 500 mock catalogues. We created a theoretical model for these statistics by measuring the N-point functions in halo catalogues produced by the approximate Lagrangian perturbation theory based simulation code, PINOCCHIO. We created simulations using initial conditions with and without the BAO feature. We find that the BAO is detected to high significance up to the 4-point correlation function.

  • PDF

Ultra-high-energy cosmic rays and filaments of galaxies in the northern sky

  • Kim, Jihyun;Ryu, Dongsu;Kim, Suk;Rey, Soo-Chang;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.36.3-36.3
    • /
    • 2017
  • The Telescope Array (TA) experiment reported the arrival direction distribution of ultra-high-energy cosmic rays (UHECRs) with energies above $5.7{\times}10^{19}eV$ in the northern sky. A clustering of TA events, the so-called hotspot, was found; however, its nature has not yet been understood. To understand the origin of the TA hotspot, we examine the sky distributions of the TA UHECR arrival direction and filamentary structures of galaxies in the local universe. By statistical tests for anisotropy, we find a close correlation of the TA events with the filaments of galaxies connected to the Virgo cluster. We discuss our finding and its implications.

  • PDF

A redshift survey of the nearby galaxy cluster Abell 2199: comparison of the spatial and kinematic distributions of galaxies and intracluster medium

  • Song, Hyunmi;Hwang, Ho Seong;Park, Changbom;Tamura, Takayuki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2017
  • We present the results from an extensive spectroscopic survey of the central region of the nearby galaxy cluster Abell 2199 (A2199) at z=0.03. By combining 775 new redshifts from the MMT/Hectospec observations with the data in the literature, we construct a large sample of 1624 galaxies with measured redshifts at R<30', which redsults in high spectroscopic completeness at $r_{petro,0}$<20.5 (77%). We use these data to study the kinematics and clustering of galaxies, focusing on the comparison with those of the intracluster medium (ICM) from Suzaku X-ray observations. We identify 406 member galaxies of A2199 at R<30' using the caustic technique. The velocity dispersion profile of cluster members appears smoothly connected to the stellar velocity dispersion profile of the cD galaxy. The luminosity function is well fitted with a Schechter function at $M_r$<-15. The radial velocities of cluster galaxies generally agree well with those of the ICM, but there are some regions where the velocity difference between the two is about a few hundred kilometers per second. The cluster galaxies show a hint of global rotation at R<5' with $v_{rot}=300-600kms^{-1}$, but the ICM in the same region does not show such rotation. We apply a friends-of-friends algorithm to the cluster galaxy sample at R<60' and identify 32 group candidates, and examine the spatial correlation between the galaxy groups and X-ray emission. This extensive survey in the central region of A2199 provides an important basis for future studies of interplay among the galaxies, the ICM, and the dark matter in the cluster.

  • PDF