• 제목/요약/키워드: galaxies: clustering

검색결과 46건 처리시간 0.019초

ANGULAR CLUSTERING OF FIR-SELECTED GALAXIES IN THE AKARI ALL-SKY SURVEY

  • Pollo, A.;Takeuchi, T.T.;Suzuki, T.L.;Oyabu, S.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.343-344
    • /
    • 2012
  • We present the first measurement of the angular two-point correlation function for AKARI $90{\mu}m$ point sources, detected outside of the Milky Way plane and selected as candidates for extragalactic sources. This is the first measurement of the large-scale angular clustering of galaxies selected in the far-infrared after IRAS. We find a positive clustering signal in both hemispheres extending up to ~ 40 degrees, without any significant fluctuations at larger scales. The observed correlation function is well fitted by a power law function. However, southern galaxies seem to be more strongly clustered than northern ones and the difference is statistically significant. The reason for this difference - technical or physical - is still to be found.

Mapping the real-space distributions of galaxies in SDSS DR7

  • Shi, Feng
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.78.1-78.1
    • /
    • 2019
  • Using a method to correct redshift space distortion (RSD) for individual galaxies, we mapped the real space distributions of galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7(DR7). We use an ensemble of mock catalogs to demonstrate the reliability of this extension, showing that it allows for an accurate recovery of the real-space correlation functions and galaxy biases. We also demonstrate that, using an iterative method applied to intermediate scale clustering data, we can obtain an unbiased estimate of the growth rate of structure $f\sigma_8$, which is related to the clustering amplitude of matter, to an accuracy of $\sim 10\%$. Applying this method to the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), we construct a real-space galaxy catalog spanning the redshift range $0.01 \leq z \leq 0.2$, which contains 584,473 galaxies in the North Galactic Cap (NGC). Using this data we, infer $0.376 \pm 0.038$ at a median redshift z=0.1, which is consistent with the WMAP9 cosmology at $1\sigma$ level. By combining this measurement with the real-space clustering of galaxies and with galaxy-galaxy weak lensing measurements for the same sets of galaxies, we are able to break the degeneracy between $f$, $\sigma_8$ and $b$. From the SDSS DR7 data alone, we obtain the following cosmological constraints at redshift $z=0.1$ for galaxies.

  • PDF

CLUSTERING OF EXTREMELY RED OBJECTS IN THE SUBARU GTO 2DEG2 FIELD

  • Shin, Jihey;Shim, Hyunjin;Hwang, Ho Seong;Ko, Jongwan;Lee, Jong Chul;Utsumi, Yousuke;Hwang, Narae;Park, Byeong-Gon
    • 천문학회지
    • /
    • 제50권3호
    • /
    • pp.61-70
    • /
    • 2017
  • We study the angular correlation function of bright ($K_s{\leq}19.5$) Extremely Red Objects (EROs) selected in the Subaru GTO 2$deg^2$ field. By applying the color selection criteria of $R-K_s$ > 5.0, 5.5, and 6.0, we identify 9055, 4270, and 1777 EROs, respectively. The number density is consistent with similar studies on the optical - NIR color selected red galaxies. The angular correlation functions are derived for EROs with different limiting magnitude and different $R-K_s$ color cut. When we assume that the angular correlation function $w({\theta})$ follows a form of a power-law (i.e., $w({\theta})=A{\theta}^{-{\delta}}$), the value of the amplitude A was larger for brighter EROs compared to the fainter EROs. The result suggests that the brighter, thus more massive high-redshift galaxies, are clustered more strongly compared to the less massive galaxies. Assuming that EROs have redshift distribution centered at ~ 1.1 with ${\sigma}_z=0.15$, the spatial correlation length $r_0$ of the EROs estimated from the observed angular correlation function ranges ${\sim}6-10h^{-1}Mpc$. A comparison with the clustering of dark matter halos in numerical simulation suggests that the EROs are located in most massive dark matter halos and could be progenitors of $L_{\ast}$ elliptical galaxies.

The Alcock-Paczynski effect via clustering shells

  • Sabiu, Cristiano G.;Lee, Seokcheon;Park, Changbom
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.58.2-58.2
    • /
    • 2013
  • Both peculiar velocities and errors in the assumed redshift-distance relation ("Alcock-Paczynski effect") generate correlations between clustering amplitude and orientation with respect to the line-of-sight. In this talk we propose a novel technique to extract the Alcock-Paczynski, geometric, distortion information from the anisotropic clustering of galaxies in 3-dimensional redshift space while minimizing non-linear clustering and peculiar velocity effects. We capitalize on the recent, large dataset from the Sloan Digital Sky Survey III (SDSS-III), which provides a large comoving sample of the universe out to high redshift. We focus our analysis on the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass (CMASS) sample of 549,005 bright galaxies in the redshift range 0.43

  • PDF

Galaxy clustering from the UKIDSS DXS

  • 김재우
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.36.1-36.1
    • /
    • 2012
  • Recent wide and deep surveys allow us to investigate the large scale structure of the Universe at high redshift. We present studies of the clustering of high redshift galaxies, using reprocessed UKIDSS DXS catalogue. We measure the angular correlation function of high redshift galaxies which is Extremely Red Objects (EROs). Firstly we found that their angular correlation functions can be described by a broken power-law. We also found that red or bright samples are more strongly clustered than those having the opposite characteristics, and that old, passive EROs are found to be more clustered than dustry, star-forming EROs. Additionally the average halo mass and other properties were estimated using the halo model. Finally the observed clustering of EROs was compared with predictions from the cosmological simulation.

  • PDF

The Topology of Galaxy Clustering in the Sloan Digital Sky Survey Main Galaxy Sample: a Test for Galaxy Formation Models

  • 최윤영;박창범;김주한;;김성수
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.82-82
    • /
    • 2010
  • We measure the topology of the galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey (SDSS DR7), examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr<-20.19 enables us to measure the genus curve with amplitude of G=378 at 6h-1Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10h-1Mpc reveals a mild scale-dependence for the shift and void abundance (A_V) parameters of the genus curve. We find strong bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which is also scale-dependent. The luminosity dependence of galaxy clustering topology discovered by Park et al. (2005) is confirmed: the distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. We find that galaxy clustering topology depends also on morphology and color. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter A_V depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations to generate mock galaxies: the Halo-Galaxy one-to-one Correspondence (HGC) model, the Halo Occupation Distribution (HOD) model, and three implementations of Semi-Analytic Models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color-dependence are usually correct in sign but incorrect in magnitude.

  • PDF

Clustering properties and halo occupation of Lyman-break galaxies at z ~ 4

  • Park, Jaehong;Kim, Han-Seek;Wyithe, Stuart B.;Lacey, Cedric G.;Baugh, Carlton M.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.59.3-60
    • /
    • 2015
  • We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ~ 4. Using the hierarchical galaxy formation model GALFORM, we predict the angular correlation function (ACF) of LBGs and compare this with the measured ACF from combined survey fields consisting of the Hubble eXtreme Deep Field (XDF) and CANDELS. We find that the predicted ACF is in a good agreement with the measured ACFs. However, when we divide the model LBGs into bright and faint subset, the predicted ACFs are less consistent with observations. We quantify the dependence of clustering on luminosity and show that the fraction of satellite LBGs is important for determining the amplitude of ACF at small scales. We find that central LBGs predominantly reside in ${\sim}10^{11}h^{-1}M_{solar}$ haloes and satellites reside in haloes of mass ${\sim}10^{12}-10^{13}h^{-1}M_{solar}$. The model predicts fewer bright satellite LBGs than is inferred from the observation. LBGs in the tails of the redshift distribution contribute significant additional clustering signal, especially on small scales. This spurious clustering may affect the interpretation of the halo occupation distribution, including the minimum halo mass and abundance of satellite LBGs.

  • PDF

IMAGING THE RADIO HALO IN THE ABELL 2256 CLUSTER OF GALAXIES

  • KIM K.-T.
    • 천문학회지
    • /
    • 제32권2호
    • /
    • pp.75-82
    • /
    • 1999
  • Diffuse radio emission in Abell 2256 was detected above 3 $\sigma$ with DRAO observations at 1420 MHz. The halo size is $\~13' {\times}10' (\~1h^{-1}_{50}\;Mpc$) in full extent and is elongated along a position angle of about $112^{\circ}$. The total flux density contained in the halo is 30$\pm$10 mJy at 1420 MHz and its spectral index is -2.04$\pm$0.04, showing no evidence for steepening up to 1420 MHz. Using the size estimate, yields a more reliable equipartition magnetic field strength which is $0.34(1 + k)^{2/7}{\mu}G$. In addition, five new radio sources are identified.

  • PDF

Cosmological constraints using BAO - From spectroscopic to photometric catalogues

  • Sridhar, Srivatsan
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.56.2-56.2
    • /
    • 2019
  • Measurement of the location of the baryon acoustic oscillation (BAO) feature in the clustering of galaxies has proven to be a robust and precise method to measure the expansion of the Universe. The best constraints so far have been provided from spectroscopic surveys because the errors on the redshift obtained from spectroscopy are minimal. This in turn means that the errors along the line-of-sight are reduced and so one can expect constraints on both angular diameter distance $D_A$ and expansion rate $H^{-1}$. But, future surveys will probe a larger part of the sky and go to deeper redshifts, which correspond to more number of galaxies. Analysing each galaxy using spectroscopy, which is a time consuming task, will not be practically possible. So, photometry will be the most convenient way to measure redshifts for future surveys such as LSST, Euclid, etc. The advantage of photometry is measuring the redshift of vast number of galaxies in a single exposure, but the disadvantage are the errors associated with the measured redshifts. Using a wedge approach, wherein the clustering is split into different wedges along the line-of-sight ${\pi}$ and across the line-of-sight ${\sigma}$, we show that the BAO information can be recovered even for photometric catalogues with errors along the line-of-sight. This means that we can get cosmological distance constraints even if we don't have spectroscopic information.

  • PDF

Velocity Dispersion Bias of Galaxy Groups classified by Machine Learning Algorithm

  • Lee, Youngdae;Jeong, Hyunjin;Ko, Jongwan;Lee, Joon Hyeop;Lee, Jong Chul;Lee, Hye-Ran;Yang, Yujin;Rey, Soo-Chang
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • We present a possible bias in the estimation of velocity dispersions for galaxy groups due to the contribution of subgroups which are infalling into the groups. We execute a systematic search for flux-limited galaxy groups and subgroups based on the spectroscopic galaxies with r < 17.77 mag of SDSS data release 12, by using DBSCAN (Density-Based Spatial Clustering of Application with Noise) and Hierarchical Clustering Method which are well known unsupervised machine learning algorithm. A total of 2042 groups with at least 10 members are found and ~20% of groups have subgroups. We found that the estimation of velocity dispersions of groups using total galaxies including those in subgroups are underestimated by ~10% compared to the case of using only galaxies in main groups. This result suggests that the subgroups should be properly considered for mass measurement of galaxy groups based on the velocity dispersion.

  • PDF