• Title/Summary/Keyword: galactosyltransferase

Search Result 35, Processing Time 0.032 seconds

Progress in Transgenic Cloned Pig for Xenotransplantation

  • Park, Kwang-Wook
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.9-19
    • /
    • 2003
  • Pig organ is thought to be the most suitable nonhuman organ for xenotransplanstation. However, one of the major constraints to using pig organs for xenotransplantation is human natural antibody-mediated hyperacute rejection (HAR). Elimination of a(1,3) galactosyltransferase (GGTA1) from the pig is expected to be a solution to the problem of hyperacute rejection. Many efforts have made characterization of GGTA1 in structure and function, improvement in the technique of DNA transfection of somatic cells and advancement of the pig NT, a specific modification has been made to one copy of the GGTAl gene by Missouri group in 2002 To date because homozygousity of the genetic modification has been achieved in this gene, the role of gala(1,3) gal specific natural antibody in HAR and the efficacy of xenotransplantation in a nonhuman primate model will be addressed. Of other genes are found to be involved in rejection of pig donors by primates, the technology will be available to modify those genes so that rejection can be overcome.

  • PDF

Progress in Transgenic Cloned Pig for Xenotransplantation

  • Park, Kwang-Wook
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2003.10a
    • /
    • pp.9-19
    • /
    • 2003
  • Pig organ is thought to be the most suitable nonhuman organ for xenotransplanstation. However, one of the major constraints to using pig organs for xenotransplantation is human natural antibody-mediated hyperacute rejection (HAR). Elimination of a(1,3) galactosyltransferase (GGTA1) from the pig is expected to be a solution to the problem of hyperacute rejection. ry1any efforts have made characterization of GGTA1 in structure and function. improvement in the technique of DNA transfection of somatic cells and advancement of the pig NT, a specific modification has been made to one copy of the GGTA1 gene by Missouri group in 2002. To date because homozygousity of the genetic modification has been achieved in this gene, the role of gala(1,3) gal specific natural antibody in HAR and the efficacy of xenotransplantation in a nonhuman primate model will be addressed. If other genes are found to be involved in rejection of pig donors by primates, the technology will be available to modify those genes so that rejection can be overcome.

  • PDF

Alpha-1,3-galactosyltransferase-deficient miniature pigs produced by serial cloning using neonatal skin fibroblasts with loss of heterozygosity

  • Kim, Young June;Ahn, Kwang Sung;Kim, Minjeong;Kim, Min Ju;Ahn, Jin Seop;Ryu, Junghyun;Heo, Soon Young;Park, Sang-Min;Kang, Jee Hyun;Choi, You Jung;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.439-445
    • /
    • 2017
  • Objective: Production of alpha-1,3-galactosyltransferase (${\alpha}GT$)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous ${\alpha}GT$ knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce ${\alpha}GT$-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. Methods: Miniature pig fibroblasts were transfected with ${\alpha}GT$ gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous ${\alpha}GT$ gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-${\alpha}$-1,3-galactose, an epitope produced by ${\alpha}GT$. Using magnetic activated cell sorting, cells with monoallelic disruption of ${\alpha}GT$ were removed. Remaining cells with LOH carrying biallelic disruption of ${\alpha}GT$ were used for the second round NT to produce homozygous ${\alpha}GT$ gene-targeted piglets. Results: Monoallelic mutation of ${\alpha}GT$ gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous ${\alpha}GT$ gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous ${\alpha}GT$ knockout piglets. Conclusion: The present study demonstrates that the time required for the production of ${\alpha}GT$-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.

Efficient Gene Targeting using Nuclear Localization Signal (NLS) and Negative Selection Marker Gene in Porcine Somatic Cells

  • Kim, Hye Min;Lee, Sang Mi;Park, Hyo Young;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.71-77
    • /
    • 2014
  • The specific genetic modification in porcine somatic cells by gene targeting has been very difficult because of low efficiency of homologous recombination. To improve gene targeting, we designed three kinds of knock-out vectors with ${\alpha}1,3$-galactosyltransferase gene (${\alpha}1,3$-GT gene), DT-A/pGT5'/neo/pGT3', DT-A/NLS/pGT5'/neo/pGT3' and pGT5'/neo/ pGT3'/NLS. The knock-out vectors consisted of a 4.8-kb fragment as the 5' recombination arm (pGT5') and a 1.9-kb fragment as the 3' recombination arm (pGT3'). We used the neomycin resistance gene (neo) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. These vectors have a neo gene insertion in exon 9 for inactivation of ${\alpha}1,3$-GT locus. DT-A/pGT5'/neo/pGT3' vector contain only positive-negative selection marker with conventional targeting vector. DT-A/NLS/pGT5'/neo/pGT3' vector contain positive-negative selection marker and NLS sequences in upstream of 5' recombination arm which enhances nuclear transport of foreign DNA into bovine somatic cells. pGT5'/neo/pGT3'/NLS vector contain only positive selection marker and NLS sequence in downstream of 3' recombination arm, not contain negative selectable marker. For transfection, linearzed vectors were introduced into porcine ear fibroblasts by electroporation. After 48 hours, the transfected cells were selected with $300{\mu}g/ml$ G418 during 12 day. The G418-resistant colonies were picked, of which 5 colonies were positive for ${\alpha}1,3$-GT gene disruption in 3' PCR and southern blot screening. Three knock-out somatic cells were obtained from DT-A/NLS/ pGT5'/neo/pGT3' knock-out vector. Thus, these data indicate that gene targeting vector using nuclear localization signal and negative selection marker improve targeting efficiency in porcine somatic cells.

Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation

  • Ullah, Imran;Lee, Ran;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Hur, Tai-Young;Ock, Sun A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1837-1847
    • /
    • 2020
  • Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.

Transdifferentiation of α-1,3-Galactosyltransferase Knock Out (GalT KO) Pig Derived Bone Marrow Mesenchymal Stromal Cells (BM-MSCs) into Pancreatic Cells by Transfection of hPDX1 (hPDX1 유전자의 삽입에 의한 직접 췌도세포 분화)

  • Ock, Sun A;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Kwon, Dae-Jin;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • Diabetes mellitus, the most common metabolic disorder, is divided into two types: type 1 and type 2. The essential treatment of type 1 diabetes, caused by immune-mediated destruction of ${\beta}-cells$, is transplantation of the pancreas; however, this treatment is limited by issues such as the lack of donors for islet transplantation and immune rejection. As an alternative approach, stem cell therapy has been used as a new tool. The present study revealed that bone marrowderived mesenchymal stromal cells (BM-MSCs) could be transdifferentiated into pancreatic cells by the insertion of a key gene for embryonic development of the pancreas, the pancreatic and duodenal homeobox factor 1 (PDX1). To avoid immune rejection associated with xenotransplantation and to develop a new cell-based treatment, BM-MSCs from ${\alpha}$-1,3-galactosyltransferase knockout (GalT KO) pigs were used as the source of the cells. Transfection of the EGFP-hPDX1 gene into GalT KO pig-derived BM-MSCs was performed by electroporation. Cells were evaluated for hPDX1 expression by immunofluorescence and RT-PCR. Transdifferentiation into pancreatic cells was confirmed by morphological transformation, immunofluorescence, and endogenous pPDX1 gene expression. At 3~4 weeks after transduction, cell morphology changed from spindle-like shape to round shape, similar to that observed in cuboidal epithelium expressing EGFP. Results of RT-PCR confirmed the expression of both exogenous hPDX1 and endogenous pPDX1. Therefore, GalT KO pig-derived BM-MSCs transdifferentiated into pancreatic cells by transfection of hPDX1. The present results are indicative of the therapeutic potential of PDX1-expressing GalT KO pig-derived BM-MSCs in ${\beta}-cell$ replacement. This potential needs to be explored further by using in vivo studies to confirm these findings.

Growth Rate of Transgenic Pigs and Size of Pig Hearts for Xenotransplantation to Cynomolgus Monkey

  • Ock, Sun A;Oh, Keon Bong;Hwang, Seongsoo;Lee, Jungkyu;Kim, Youngim;Moon, Sun-Woung;Kwon, Dae-Jin;Yun, Ik Jin;Park, Eungwoo
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.333-337
    • /
    • 2014
  • To compensate for the critical shortage of human organs for allotransplantation, xenotransplantation studies using genetically modified pigs are being performed in Korea. Two types of pigs that are used are ${\alpha}1,3$-galactosyltransferase gene knockout (GalT KO) pigs and GalT KO+hCD46 (human complement regulatory protein) pigs. The present study measured the gestation time, birth weight, daily growth rate, and heart weight of both kinds of transgenic minipigs. The gestation period for both types of pigs was 117~119 days. There was no difference in the body weight of GalT KO (-/+) and GalT KO (-/-) piglets, but GalT KO+hCD46 ($-^{hCD46+}/+$) pigs were significantly heavier at birth than were GalT KO+hCD46 ($-^{hCD46+}/-^{hCD46+}$) pigs. During the first 10 weeks of life, the daily weight gain of GalT KO+hCD46 ($-^{hCD46+}/-^{CD46+}$) piglets, which are considered the optimal type for xenotransplantation, was 0.19 kg. The weight of hearts from GalT KO piglets up to two months of age was affected more by body weight than by age. Transgenic pigs showed no differences in gestation period or reproductive ability compared with normal pigs. These results comprise basic data that may be used in xenotransplantation studies and transgenic animal production in Korea.

Reproductive Characteristic of Transgenic Massachusetts General Hospital Miniature Pigs for Xenotransplantation (Massachusetts General Hospital 미니돼지 유래 이종이식용 형질전환 돼지의 번식 특성 분석)

  • Ji, Soo-Jeong;Lee, Gunsup;Park, Sang Hyoun;Kim, Kyung Woon;Byun, Sung-June;Ock, Sun A;Hwang, Seongsoo;Woo, Jae-Seok;Oh, Keon Bong
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.165-170
    • /
    • 2017
  • Pigs have been extensively used as mediators of xenotransplantation research. Specifically, the Massachusetts General Hospital (MGH) miniature pig was developed to fix major histocompatibility antigens for use in xenotransplantation studies. We generated transgenic pigs for xenotransplantation using MGH pigs. However, it has not been studied yet whether these pigs show similarity of reproductive physiological characteristics to wild types of MGH miniature pig. In this study we analyzed the estrous cycles and pregnancy characteristics of wild type (WT) and transgenic MGH miniature pigs, which were ${\alpha}1,3$-galactosyltransferase (GalT) heterozygous and homozygous knock-out, and membrane cofactor protein (MCP) inserted in its locus, $GalT^{-MCP/+}$ and $GalT^{-MCP/-MCP}$ pigs. Estrous cycles of WT, $GalT^{-MCP/+}$ and $GalT^{-MCP/-MCP}$ pigs were $20.9{\pm}0.74$, $20.1{\pm}1.26$, and $17.3{\pm}0.87days$, respectively, and periods of estrous were $3.2{\pm}0.10$, $3.1{\pm}0.12$, and $3.1{\pm}0.11days$. The periods of gestation of WT, $GalT^{-MCP/+}$ and $GalT^{-MCP/-MCP}$ pigs were $114.2{\pm}0.37$, $113.3{\pm}0.67$, and $115.4{\pm}0.51days$, respectively. Litter sizes of WT, $GalT^{-MCP/+}$ and $GalT^{-MCP/-MCP}$ pigs were $4.8{\pm}0.35$, $4.8{\pm}1.11$ and $3.0{\pm}0.32$ respectively. There were no significant differences on estrous cycle, periods of estrous and gestation, and litter size among WT, $GalT^{-MCP/+}$ and $GalT^{-MCP/-MCP}$ pigs, meaning that GalT knock-out and additional expression MCP of the MGH miniature pig did not effect on reproduction traits. These results provide relevant information to establish breeding system for MGH transgenic pig, and for propagation of $GalT^{-MCP/-MCP}$ pig to supply for xenotransplantation research.

Enhanced sialylation and in vivo efficacy of recombinant human α-galactosidase through in vitro glycosylation

  • Sohn, Youngsoo;Lee, Jung Mi;Park, Heung-Rok;Jung, Sung-Chul;Park, Tai Hyun;Oh, Doo-Byoung
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.157-162
    • /
    • 2013
  • Human ${\alpha}$-galactosidase A (GLA) has been used in enzyme replacement therapy for patients with Fabry disease. We expressed recombinant GLA from Chinese hamster ovary cells with very high productivity. When compared to an approved GLA (agalsidase beta), its size and charge were found to be smaller and more neutral. These differences resulted from the lack of terminal sialic acids playing essential roles in the serum half-life and proper tissue targeting. Because a simple sialylation reaction was not enough to increase the sialic acid content, a combined reaction using galactosyltransferase, sialyltransferase, and their sugar substrates at the same time was developed and optimized to reduce the incubation time. The product generated by this reaction had nearly the same size, isoelectric points, and sialic acid content as agalsidase beta. Furthermore, it had better in vivo efficacy to degrade the accumulated globotriaosylceramide in target organs of Fabry mice compared to an unmodified version.

Lactosylceramide Mediates the Expression of Adhesion Molecules in TNF-${\alpha}$ and IFN ${\gamma}$-stimulated Primary Cultured Astrocytes

  • Lee, Jin-Koo;Kim, Jin-Kyu;Park, Soo-Hyun;Sim, Yun-Beom;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.251-258
    • /
    • 2011
  • Here we have investigated how lactosylceramide (LacCer) modulates gene expression of adhesion molecules in TNF-${\alpha}$ and IFN ${\gamma}$ (CM)-stimulated astrocytes. We have observed that stimulation of astrocytes with CM increased the gene expression of ICAM-1 and VCAM-1. D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and N-butyldeoxynojirimycin (NBDNJ), inhibitors of glucosylceramide synthase (GLS) and LacCer synthase (galactosyltransferase, GalT-2), inhibited the gene expression of ICAM-1 and VCAM-1 and activation of their gene promoter induced by CM, which were reversed by exogenously supplied LacCer. Silencing of GalT-2 gene using its antisense oligonucleotides also attenuated CM-induced ICAM-1 and VCAM-1 expression, which were reversed by LacCer. PDMP treatment and silencing of GalT-2 gene significantly reduced CM-induced luciferase activities in NF-${\kappa}B$, AP-1, GAS, and STAT-3 luciferase vectors-transfected cells. In addition, LacCer reversed the inhibition of NF-${\kappa}B$ and STAT-1 luciferase activities by PDMP. Taken together, our results suggest that LacCer may play a crucial role in the expression of ICAM-1 and VCAM-1 via modulating transcription factors, such as NF-${\kappa}B$, AP-1, STAT-1, and STAT-3 in CM-stimulated astrocytes.