• Title/Summary/Keyword: galactic bulge

Search Result 69, Processing Time 0.067 seconds

Detection of Variable Stars in the Open Cluster M11 Using Difference Image Analysis Pipeline

  • Lee, Chung-Uk;Koo, Jae-Rim;Kim, Seung-Lee;Lee, Jae-Woo;Park, Byeong-Gon;Han, Cheong-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • We developed a photometric pipeline to be used for a wide field survey. This pipeline employs the difference image analysis (DIA) method appropriate for the photometry of star dense field such as the Galactic bulge. To verify the performance of pipeline, the observed dataset of the open cluster M11 was re-processed. One hundred seventy eight variable stars were newly discovered by analyzing the light curves of which photometric accuracy was improved through the DIA. The total number of variable stars in the M11 observation region is 335, including 157 variable stars discovered by previous studies. We present the catalogue and light curves for the 178 variable stars. This study shows that the photometric pipeline using the DIA is very useful in the detection of variable stars in a cluster.

A study AGN activity on environmental dependence in the SDSS late-type galaxies

  • Kim, Minbae;Choi, Yun-Yung;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.57.4-58
    • /
    • 2018
  • We explore the role of various environments in triggering star formation (SF) and narrow-line active galactic nucleus (AGN) in SDSS spiral galaxies and the SF-AGN connection, using a volume-limited sample with $M_r$ < -19.5 and 0.02 < z < 0.055 selected from the SDSS Release 7. To avoid the dependency of AGN activity on bulge mass, the central velocity dispersion of the sample galaxies is limited to have a narrow range of $130{\leq}{\sigma}{\leq}200km\;s^{-1}$. We note that in gas sufficient galaxies, AGN feeding lags behind starburst, whereas as the gas exhausts, the SF slows down and AGN seems to even prevent the SF, and thus divide the high-${\sigma}$ sample into two subsamples according to their cold gas content at central region traced by fiber star formation rate, $SFR_{fib}$. We find that a high density (cluster) environment causes a significant increase in AGN activity as well as gas depletion in host galaxies. However, the finding is only noticeable in the high-${\sigma}$ and low $SFR_{fib}$ sample. It seems that a galaxy interaction with the nearest neighbor directly affects the SF of the central region. However, it is unclear whether it directly affects AGN activity.

  • PDF

CLASSIFICATION OF OGLE VARIABLES IN GALACTIC BULGE (은하벌지에서 발견된 OGLE 변광성의 분류)

  • 강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.207-215
    • /
    • 1997
  • The miscellaneous variables observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed to find their characteristics. We investigated evolutionary status, shape of light curve, relationship between orbital period and amplitude of light variation for the miscellaneous variables. The miscellaneous variables except ellipsoidal variables are subgiants or giants. The shapes of the light curves are similar to those of nearby RS CVn type stars. The amplitudes of the light variations decrease rapidly as increasing their orbital periods for the variables whose periods are shorter than 30 days, while the amplitudes decrease slowly for the variables whose periods are longer that 30 days. Thus the OGLE miscellaneous variables are classified as the RS CVn type stars.

  • PDF

Data Management Plan for the KMTNet Project

  • Lee, Chung-Uk;Kim, Dong-Jin;Kim, Seung-Lee;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.221.1-221.1
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute (KASI) is developing three 1.6m optical telescopes with $18k{\times}18k$ mosaic CCD cameras. These telescopes will be installed and operated at Chile, South Africa, and Australia for Korea Micro-lensing Telescope Network (KMTNet) project. The main scientific goal of the project is to discover earth-like extra-solar planets using the gravitational micro-lensing technique. To achieve the goal, each telescope at three sites will continuously monitor the specific region of Galactic bulge with 2.5 minute cadence for five years. Assuming 12 hour observation in maximum for a night, the amount of 200 GB file storage is required for one night observation at one observatory. If we consider the whole project period and the data processing procedure, a few PB class data storage, high-speed network, and high performance computers are essential. In this presentation, we introduce the KMTNet data management plan that handles gigantic data; raw image collecting, image processing, photometry pipeline, database archiving, and backup.

  • PDF

The development of field galaxies in the first half of the cosmic history

  • Park, Minjung;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.35.3-36
    • /
    • 2018
  • One of the most prevalent knowledge about disk galaxies, which dominate the population of the local Universe, is that they consist of stellar structures with different kinematics, such as thin disk, bulge, and halo. Therefore, investigating when and how these components develop in a galaxy is the key to understanding the evolution of galaxies. Using the NewHorizon simulation, we can resolve the detailed structures of galaxies, in the field environment, from the early Universe where star formation and mergers were most active. We first decompose stellar particles in a galaxy into a disk and a dispersion-dominated, spheroidal, component based on their orbits and then see how these components evolve in terms of mass and structure. At high redshift z~3, galaxies are mostly dispersion-dominated as stars are formed misaligned with the galactic rotational axis. At z=1~2, massive galaxies start to dominantly form disk stars, while less massive galaxies do much later. Furthermore, massive galaxies are forming thinner and larger disks with time, and the preexistent disks are heated or even disrupted to become a part of dispersion-dominated component. Thus, the mass growth of spheroidal components at later epochs is dominated by disrupted stars with disk origins and accreted stars at large radii.

  • PDF

THE INITIAL CONDITIONS AND EVOLUTION OF ISOLATED GALAXY MODELS: EFFECTS OF THE HOT GAS HALO

  • Hwang, Jeong-Sun;Park, Changbom;Choi, Jun-Hwan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.1-32
    • /
    • 2013
  • We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.

ABSOLUTE DIMENSIONS OF CONTACT BINARY STARS IN BAADE WINDOW (바데의 창 영역에서 발견된 접촉형 쌍성의 절대량)

  • 강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.217-266
    • /
    • 1999
  • The light curves of the representative 6 contact binary stars observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed by the method of the Wilson and Devinney Differential Correction to find photometric solutions. The orbital inclinations of these Devinney Differential Correction to find photometric solutions. The orbital inclinations of these binaries are in the range of $52^{circ}-69^{\circ}$ which is lower than that of the solar neighborhood binaries. The Roche lobe filling factor of these binaries are distributed in large range of 0.12 - 0.90. Since absence of spectroscopic observations for these binaries we have found masses of the 6 binary systems based on the intersection between Kepler locus and locus derived from Vandenberg isochrones in the mass - luminosity plane. Then absolute dimensions and distances have been found by combining the masses and the photometric solutions. The distances of the 6 binary systems are distributed in the range of 1 kpc- 6 kpc. This distance range is the limiting range where the contact binaries which have period shorter than a day are visible. Most contact binaries discovered in the Baade window do not belong to the Galactic bulge.

  • PDF

DEEP-South: Round-the-Clock Physical Characterization and Survey of Small Solar System Bodies in the Southern Sky

  • Moon, Hong-Kyu;Kim, Myung-Jin;Roh, Dong-Goo;Park, Jintae;Yim, Hong-Suh;Choi, Young-Jun;Bae, Young-Ho;Lee, Hee-Jae;Oh, Young-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2016
  • Korea Microlensing Telescope Network (KMTNet) is the first optical survey system of its kind in a way that three KMTNet observatories are longitudinally well-separated, and thus have the benefit of 24-hour continuous monitoring of the southern sky. The wide-field and round-the-clock operation capabilities of this network facility are ideal for survey and the physical characterization of small Solar System bodies. We obtain their orbits, absolute magnitudes (H), three dimensional shape models, spin periods and spin states, activity levels based on the time-series broadband photometry. Their approximate surface mineralogy is also identified using colors and band slopes. The automated observation scheduler, the data pipeline, the dedicated computing facility, related research activity and the team members are collectively called 'DEEP-South' (DEep Ecliptic Patrol of Southern sky). DEEP-South observation is being made during the off-season for exoplanet search, yet part of the telescope time is shared in the period between when the Galactic bulge rises early in the morning and sets early in the evening. We present here the observation mode, strategy, software, test runs, early results, and the future plan of DEEP-South.

  • PDF

A SUPER-JUPITER MICROLENS PLANET CHARACTERIZED BY HIGH-CADENCE KMTNET MICROLENSING SURVEY OBSERVATIONS OF OGLE-2015-BLG-0954

  • SHIN, I.-G.;RYU, Y.-H.;UDALSKI, A.;ALBROW, M.;CHA, S.-M.;CHOI, J.-Y.;CHUNG, S.-J.;HAN, C.;HWANG, K.-H.;JUNG, Y.K.;KIM, D.-J.;KIM, S.-L.;LEE, C.-U.;LEE, Y.;PARK, B.-G.;PARK, H.;POGGE, R.W.;YEE, J.C.;PIETRUKOWICZ, P.;MROZ, P.;KOZLOWSKI, S.;POLESKI, R.;SKOWRON, J.;SOSZYNSKI, I.;SZYMANSKI, M.K.;ULACZYK, K.;WYRZYKOWSKI, L.;PAWLAK, M.;GOULD, A.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.3
    • /
    • pp.73-81
    • /
    • 2016
  • We report the characterization of a massive (mp = 3.9±1.4Mjup) microlensing planet (OGLE-2015-BLG-0954Lb) orbiting an M dwarf host (M = 0.33 ± 0.12M) at a distance toward the Galactic bulge of $0.6^{+0.4}_{-0.2}kpc$, which is extremely nearby by microlensing standards. The planet-host projected separation is a⊥ ~ 1.2AU. The characterization was made possible by the wide-field (4 deg2) high cadence (Γ = 6 hr–1) monitoring of the Korea Microlensing Telescope Network (KMTNet), which had two of its three telescopes in commissioning operations at the time of the planetary anomaly. The source crossing time t* = 16 min is among the shortest ever published. The high-cadence, wide-field observations that are the hallmark of KMTNet are the only way to routinely capture such short crossings. High-cadence resolution of short caustic crossings will preferentially lead to mass and distance measurements for the lens. This is because the short crossing time typically implies a nearby lens, which enables the measurement of additional effects (bright lens and/or microlens parallax). When combined with the measured crossing time, these effects can yield planet/host masses and distance.