• Title/Summary/Keyword: gait trajectory

Search Result 90, Processing Time 0.03 seconds

Generation of Adaptive Walking Motion for Uneven Terrain (다양한 지형에서의 적응적인 걷기 동작 생성)

  • 송미영;조형제
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1092-1101
    • /
    • 2003
  • Most of 3D character animation adjusts the gait of their characters for various terrains, using motion capture data through the motion capture equipments. This motion capture data can be naturally presented as real human motions, which are to be adjusted according to the various types of terrain. In addition, there would be a difficulty applying motion capture data for other characters in which the motion data will be captured again or edited for the existing motion data. Therefore, this paper proposes a method that is to generate walking motion for various terrains, such as flat, inclined plane, stair, and irregular face, and a method that is to calculate the trajectory of the swing leg and pelvis. These methods are able to generate various gaits controlled by the parameters of body height, walking speed, stride, etc. In addition, the positions and angles of joint can be calculated by using inverse kinematics, and the cubic spline will be used to calculate the trajectory of the joint.

A Comparative Study of the Plantar Foot Pressure according to the Form of Foot Angle during Level Walking (평지 보행 시 발 각도 형태에 따른 발바닥 압력 비교 연구)

  • Lee, Jeon-Hyeong;Kim, Ki-Chul;Kuk, Jung-Suk
    • PNF and Movement
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the influence of foot angles on plantar pressure and the center of pressure (COP) trajectory length during level walking. Methods: The study subjects were 30 female university students without orthopedic diseases in the foot. The foot angle was divided into three forms (out-toeing, normal, in-toeing). The subjects practiced each type of gait, and then performed each of level walking, three times, and their averages were calculated. A plantar pressure measurement instrument was used, and the maximum force was obtained by dividing the foot into nine regions covering the anterior medial-lateral, middle medial-lateral, and posterior medial-lateral. The COP trajectory length was statistically processed by obtaining medial-lateral, anterior-posterior, and entire travel distance. Results: During normal walking, the maximum force was significantly higher in the anterior lateral than in the other areas, and the COP trajectory length was significantly shorter in the front-back and entire travel distances (p<0.05). During stair climbing. Conclusion: Walking at abnormal foot angles does not cause appreciable problems in the short term as pressure is concentrated on a specific plantar part. However, it becomes the cause of deformed foot structures and can result in musculoskeletal disabilities in the long term. Therefore, a kinesiatrics-based intervention is required to maintain normal foot angles.

Use of Learning Based Neuro-fuzzy System for Flexible Walking of Biped Humanoid Robot (이족 휴머노이드 로봇의 유연한 보행을 위한 학습기반 뉴로-퍼지시스템의 응용)

  • Kim, Dong-Won;Kang, Tae-Gu;Hwang, Sang-Hyun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.539-541
    • /
    • 2006
  • Biped locomotion is a popular research area in robotics due to the high adaptability of a walking robot in an unstructured environment. When attempting to automate the motion planning process for a biped walking robot, one of the main issues is assurance of dynamic stability of motion. This can be categorized into three general groups: body stability, body path stability, and gait stability. A zero moment point (ZMP), a point where the total forces and moments acting on the robot are zero, is usually employed as a basic component for dynamically stable motion. In this rarer, learning based neuro-fuzzy systems have been developed and applied to model ZMP trajectory of a biped walking robot. As a result, we can provide more improved insight into physical walking mechanisms.

  • PDF

Control of balancing weight for IWR biped robot by genetic algorithm (유전 알고리즘을 이용한 IWR 이족 보행 로보트의 균형추 제어)

  • 심경흠;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1185-1188
    • /
    • 1996
  • In this paper we present a genetic approach for trajectory control algorithm of balancing weight for IWR biped walking robot. The biped walking robot, IWR that was made by Automatic Control Lab. of Inha University has a trunk which stabilizes its walking by generating compensation moment. Trunk is composed of a revolute and a prismatic joint which roles balancing weight. The motion of balancing weight is determined by the gait of legs and represented by two linear second order ordinary differential equations. The solution of this equation must satisfy some constraints simultaneously to have a physical meaning. Genetic algorithm search for this feasible motion of balancing weight under some constraints. Simulation results show that feasible motion of balancing weight can be obtained by genetic algorithm.

  • PDF

Development of 3-Dimensional Simulator for a Biped Robot (이족 보행로봇의 3차원 모의실험기 개발)

  • Noh, Kyung-Kon;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

Dynamic Simulation of Modifiable Walking Pattern Generation to Handle Infeasible Navigational Commands for Humanoid Robots

  • Hong, Young-Dae;Lee, Ki-Baek;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.751-758
    • /
    • 2016
  • The modifiable walking pattern generation (MWPG) algorithm can handle dynamic walking commands by changing the walking period, step length, and direction independently. When an infeasible command is given, the algorithm changes the command to a feasible one. After the feasibility of the navigational command is checked, it is translated into the desired center of mass (CM) state. To achieve the desired CM state, a reference CM trajectory is generated using predefined zero moment point (ZMP) functions. Based on the proposed algorithm, various complex walking patterns were generated, including backward and sideways walking. The effectiveness of the patterns was verified in dynamic simulations using the Webots simulator.

Design of 4 joints 3 Link Biped Robot and Its Gaits (4관절 3링크 2족 로봇과 걸음새에 관한 연구)

  • Kim, Sung-Hoon;Oh, Jun-Ho;Lee, Ki-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.523-528
    • /
    • 2000
  • In this paper, the new type biped walking robot which is composed of the minimum number or links just for walking and its appropriate gaits are proposed. The proposed new gaits for this robot are four-crossing, crawling, standing and turning gait. In designing the biped robot we propose the Performance Index which means the needed torque per a moving distance and generate foot trajectories by $3^{rd}$ order spline Interpolation. Among those, numerically we find the optimal conditions which minimize the Performance Index. Dynamically stable walking of the biped robot is realized by satisfying the stability condition of ZMP(zero moment point), which is related to maintaining the ZMP within the region of the supporting foot during the s1n91e leg support phase. We determine the region of mass center from the stability condition of ZMP and plan references which track the mass conte. trajectory of constant velocity. Finally we implement the gaits statically tracking the planned trajectories using PD control method.

  • PDF

Control of an above-knee prosthesis using MR damper (MR 감쇠기를 이용한 무릎 관절 의족의 제어)

  • 김정훈;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.244-244
    • /
    • 2000
  • We proposed the above-knee prosthesis using rotary MR damper in which knee joint is semi-actively controlled by microprocessor. Dissipation torque in the knee joint can be controlled by the magnetic field which is induced by applying current to a solenoid, Tracking control of knee joint angle was tested by 3-DOF Leg simulator. The experimental results show that the proposed above-knee prosthesis system had good performance in swing phase tracking and repetitive controller in conjunction with a computed control law and PD control law, reduced RMS tracking error as the repetitions of tracking. Moreover, desired knee angle trajectory was generated based on the estimation of gait period with the gyro signal and the tracking control was performed.

  • PDF

An analysis of characteristic of a pneumatic cylinder in intelligent prosthesis (인공지능 의지용 공압실린더의 특성 해석)

  • Cho, H.S.;Kim, J.K.;Ryu, J.C.;Kim, S.K.;Mun, M.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.80-81
    • /
    • 1998
  • In this study, an experiments and numerical simulation of a three chamber pneumatic cylinder for an intelligent AK-knee prosthesis is performed. The cylinder has a variable orifice which can be controlled automatically through a microprocessor controller as needed while amputee gaits. In the experiment, the cylinder was driven by a cam whose trajectory of simulates the normal gait and axial forces of cylinder with different of orifice opening was measured. The numerical simulations was based on thermodynamic and fluid mechanical consideration. The experimental results and the numerical results were in good agreement.

  • PDF

Development of Body-Weight-Support System for Walking Rehabilitation (보행 재활을 위한 신체 자중 보상용 모바일 로봇에 관한 연구)

  • Suh, Seung-Whan;Yu, Seung-Nam;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3658-3665
    • /
    • 2010
  • As the population of elderly people and disabled people are increased, various demands for human welfare using robot system are raised. Especially autonomous rehabilitation system using robot could reduce the human effort while maintaining the its intrinsic efficacy. This study deals with mobile gait rehabilitation system which combined with BWS (Body Weight Support) for training of elderly and handicapped people who suffer the muscle force weakness of lower extremity. BWS which is designed by kinematic analysis of body lifting characteristics and walking guide system are integrated with main control system and wheeled platform. This mobile platform is operated by UCS (User Command System) and autonomous trajectory planning algorithm. Finally, through the EMG (Electromyography) signal measuring and its analysis for subject, performance and feasibility of developed system is verified.