• Title/Summary/Keyword: gadolinium

Search Result 325, Processing Time 0.027 seconds

Mechanism of Acetylcholine-induced Endothelium-dependent Relaxation in the Rabbit Carotid Artery by M3-receptor Activation

  • Song, Yong-Jin;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.313-317
    • /
    • 2004
  • The present study were designed to characterize the action mechanisms of acetylcholine (ACh)-induced endothelium-dependent relaxation in arteries precontracted with high $K^+$(70 mM). For this, we simultaneously measured both muscle tension and cytosolic free $Ca^{2+}$ concentration $([Ca^{2+}]_i)$, using fura-2, in endothelium-intact, rabbit carotid arterial strips. In the artery with endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension whereas ACh $(10{\mu}M)$ significantly relaxed the muscle and increased $[Ca^{2+}]_i$. In the presence of $N^G$-nitro-L-arginine (L-NAME, 0.1 mM), ACh increased $[Ca^{2+}]_i$ without relaxing the muscle. In the artery without endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension although ACh was ineffective. 4-DAMP (10 nM) or atropine $(0.1{\mu}M)$ abolished ACh-induced increase in $[Ca^{2+}]_i$ and relaxation. The increase of $[Ca^{2+}]_i$ and vasorelaxation by ACh was siginificantly reduced by either $3{\mu}M$ gadolinium, $10{\mu}M$ lanthanum, or by $10{\mu}M$ SKF 96365. These results suggest that in rabbit carotid artery, ACh-evoked relaxation of 70 mM $K^+$-induced contractions appears to be mediated by the release of NO. ACh-evoked vasorelaxation is mediated via the $M_3$ subtype, and activation of the $M_3$ subtype is suggested to stimulate nonselective cation channels, leading to increase of $[Ca^{2+}]_i$ in endothelial cells.

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation

  • Yi, Eun-Jeong;Yoon, Mi-Young;Moon, Ji-Woong;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.

Fabrication of Thin Solid Oxide Film Fuel Cells

  • Jee, Young-Seok;Chang, Ik-Whang;Son, Ji-Won;Lee, Jong-Ho;Kang, Sang-Kyun;Cha, Suk-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.82-85
    • /
    • 2010
  • Recently, thin film processes for oxides and metal deposition, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have been widely adapted to fabricate solid oxide fuel cells (SOFCs). In this paper, we presented two research area of the use of such techniques. Gadolinium doped ceria (GDC) showed high ionic conductivity and could guarantee operation at low temperature. But the electron conductivity at low oxygen partial pressure and the weak mechanical property have been significant problems. To solve these issues, we coated GDC electrolyte with a nano scale yittria-doped stabilized zirconium (YSZ) layer via atomic layer deposition (ALD). We expected that the thin YSZ layer could have functions of electron blocking and preventing ceria from the reduction atmosphere. Yittria-doped barium zirconium (BYZ) has several orders higher proton conductivity than oxide ion conductor as YSZ and also has relatively high chemical stability. The fabrication processes of BYZ is very sophisticated, especially the synthesis of thin-film BYZ. We discussed the detailed fabrication processes of BYZ as well as the deposition of electrode. This paper discusses possible cell structure and process flow to accommodate such films.

Magnetic Refrigeration Apparatus at Room Temperature Using Concentric Halbach Cylinder Permanent Magnets (동심 원통형 Halbach 배열 영구자석을 이용한 상온 자기냉동장치)

  • Lee, Changho;Lee, Jong Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.47-51
    • /
    • 2017
  • Recently international cooperations are formed to deal with the environmental pollution of the atmosphere generated by the vapor compression refrigeration system. A refrigeration technique, which can replace existing CFC refrigerants that are the main cause of environmental contamination, has received greater attention. Magnetic refrigeration is a refrigeration technique using the magnetocaloric effect of the magnetic material, and is an eco-friendly refrigeration technology using the solid refrigerant instead of CFC refrigerants. Also it is regarded as an efficient refrigeration system to generate temperature difference between high and low sides using the temperature change of magnetic refrigerants according to the change of magnetic field, instead of using power-consuming and noisy compressor. In this paper, we introduce the magnetic refrigeration apparatus using concentric Halbach cylinder permanent magnets and the experimental results using the apparatus.

Synthesis and Characterization of LSCF/CGO Composite Cathode for SOFC (SOFC용 LSCF/CGO 공기극의 제조 및 특성연구)

  • Park, Jae-Layng;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Shin, Dong-Ryul;Han, Kyoo-Seung;Song, Rak-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • Composites of LSCF($La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$) and CGO (gadolinium doped ceria)-based ceramics are logical candidate cathode materials with CGO electrolytes. LSCF with perovskite structure was synthesized and investigated by Solid State Reaction (SSR) method used as cathode materials for SOFC (solid oxide fuel cell). The optimized temperature was $1100^{\circ}C$ to synthesize $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ with rhombohedral structure. The polarization resistance of the LSCF/CGO (50:50 wt.%) was smaller than that of other composite cathodes. The analysis of the EIS data of LSCF/CGO suggests that the diffusion and adsorption-desorption of oxygen can be the key process in the cathodic reaction.

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.

Cervicofacial Actinomycosis with Orbit Involvement (안구 침범을 동반한 두경부 방선균증)

  • Lee, Tae Young;Lee, Eun Joo;Chang, Hyuk Won;Jung, Hye Ra;Kim, Eal Maan;Lee, Hyung;Kim, Sang Pyo;Lee, Sang Kwon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.70-74
    • /
    • 2014
  • Actinomycosis is caused by filamentous Gram positive anaerobic bacteria from the Actinomycetaceae family, and known as a rare cause of the infection at the eyeball. We report magnetic resonance findings of a 60-year-old Korean man with cervicofacial actinomycosis, including cellulitis in the eye and central nervous system actinomycosis. On orbital magnetic resonance imaging, gadolinium-enhanced T1-weight images showed multiple abnormal enhancing lesions in head and neck including right eye, and some include low signal intensities which considered as abscesses. The lesions was diagnosed as actinomycosis by incisional biopsy, and since then was cured by using antibiotics of penicillin family.

Effect of the Annealing Conditions on the Ferromagnetic Resonance of YIG Thin Film Prepared on GGG Substrate (Gd3Ga5O12 기판위에 성장된 Y3Fe5O12 박막의 열처리 조건에 따른 강자성 공명 특성 연구)

  • Lee, Yelim;Phuoc, Cao Van;Park, Seung-Young;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.703-707
    • /
    • 2015
  • In this study, we investigated the effect of annealing conditions on the ferromagnetic resonance(FMR) of yttrium iron garnet ($Y_3Fe_5O_{12}$, YIG) thin film prepared on gadolinium gallium garnet ($Gd_3Ga_5O_{12}$, GGG) substrate. The YIG thin films were grown by rf magnetron sputtering at room temperature and were annealed at various temperatures from 700 to $1000^{\circ}C$. FMR characteristics of the YIG thin films were investigated with a coplanar waveguide FMR measurement system in a frequency range from 5 to 20 GHz. X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to characterize the phase formation, crystal structure and composition of the YIG thin films. Field dependent magnetization curves at room temperature were obtained by using a vibrating sample magnetometer(VSM). The FMR measurements revealed that the resonance magnetic field was highly dependent on the annealing condition: the lowest FMR linewidth can be observed for the $800^{\circ}C$ annealed sample, which agrees with the VSM results. We also found that the Fe and O composition changes during the annealing process play important roles in the observed magnetic properties.

Evaluation of Rare Earths viewed from the Occupational Health (산업보건 측면에서의 희토류 건강영향 평가)

  • Shin, Seo-Ho;Rim, Kyung-Taek;Kim, Jong-Choon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.237-252
    • /
    • 2016
  • Objectives: This study was conducted in order to improve the current understanding of rare earths(RE) and to provide supporting data for establishing occupational health policies by reviewing the toxicological data and issues caused by the use of RE compounds in various fields. Methods: To evaluate the potential toxicity of RE from the viewpoint of occupational health, we summarized extensive reviews of relevant articles in the toxicology(animals and cells), occupational health and safety, and epidemiologic literature. Results: Although occupational RE exposure occurs extensively from ore mining and refining to end users in various industrial applications, epidemiologic study has not been performed among workers up to now. Bioaccumulation and adverse effects of RE have also been mentioned in ore mining regions and nearby residences, but safety standards for each process are insufficient. Moreover, because new commercial recycling technology will soon be applied to various industries, regulation and policies are needed for preventing abuse of recycling. In the results of animal toxicity for a few REs(mostly cerium, lanthanum, and gadolinium), toxicities of liver, lung, blood, and the nervous system were identified due to oxidative stress, but study of long-term RE exposure is required. Understanding the dual effect for RE and discovery of biomarkers pose a scientific challenge in further mechanism studies. Conclusions: In the future, additional hazard evaluation based on animal experiments is required, alongside continuous research for developing analytical methods and discovering biomarkers. Finally, RE occupational health and safety management needs to be integrated into the sustainable use of these materials.

Evaluation of Absorbed Dose According to the Nanoparticle in Prostate Cancer Brachytherapy (전립선암의 근접치료 시 나노입자에 따른 흡수선량평가)

  • Park, Eun-tae;Lee, Deuk-hee;Im, In-chul
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.167-172
    • /
    • 2018
  • This study evaluated absorbed dose of brachytherapy according to the nanoparticle in prostate cancer which many occurred in Korean man and provided basic data. Absorbed dose evaluation was using MCNPX program which was applied Monte Carlo simulation. Source was applied $^{192}Ir$ which was many using in Korean HDR machine and gold, ferric oxide, gadolinium and iodine nanoparticle were applied. Prostate absorbed dose result was increased when using nanoparticle, in particular gold nanoparticle was the highest result as $3.13E-03J/kg{\cdot}e$. Absorbed dose of surrounding organs and distance was similar between using nanoparticle and non-using nanoparticle. Therefore, brachytherapy was used nanoparticle was increased therapeutic ratio and efficiency of radiation therapy.