• Title/Summary/Keyword: gabion

Search Result 66, Processing Time 0.023 seconds

Development of the Forest Road Cut-slope Rehabilitation Techniques Using Gabion Systems with Vegetation Base Materials (식생기반재 돌망태를 이용한 임도비탈면 복원기술 개발)

  • Park, Jae-Hyeon;Jeong, Yong-Ho;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.92-103
    • /
    • 2008
  • Development of new approaches to achieve naturally good ecological potential of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials to prevent slope failure and erosion, in the area with highly erodible soil. As a result on the type analysis of gabion systems already installed in road cut-slopes, gabion systems were generally established to prevent slope failure. Existing gabion systems can be divided into monolithic and modular system and can be divided into ten subtypes according to the purpose of establishment and combination of other measures. As a result on the monitoring of erosion amount from forest road cut-slopes in the test applications, the order of erosion amount from largest to smallest is as follows : the curved road cut-slope site where normal gabion system was established ($7,911cm^3$); the control site ($7,632cm^3$); the straight road cut-slope site where normal gabion system was established ($7,301cm^3$); the curved road cut-slope site where the new gabion system was established ($5,684cm^3$); and the straight road cut-slope site where the new gabion system ($5,325cm^3$). Therefore, the result shows that the new gabion system is more effective than the normal gabion system to reduce erosion amount from forest ! road cut-slopes. During the study period, vegetation coverages of the straight and curved road cut-slope site where the new gabion system was established were about 45% and about 36%, so average vegetation coverage of the sites where the new gabion systems was established was higher than the sites where the normal gabion systems was established. Therefore, it was concluded that the new gabion system can be more effective for cut-slope revegetation.

Model Gabion's Pollutant Accumulation Efficiency (모형 Gabion의 오염물질 포착률)

  • Jeong, Jae-Hoon;Jeong, Hae-Won;Yoon, Jung-Hwan;Park, Seung-Ki
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.91-96
    • /
    • 2005
  • This study was performed for the research on the method for reducing non-point pollutant with the gabion which was made of gravel-packed plastic frame, and for the characterization of gabion adsorbing pollutant. The result showed that the concentrations of suspended solid in turbid water were reduced to $77.7{\sim}84.7%$ when the water was flowing through the gabion. The uniformity coefficients on the grain size accumulation curves of the adsorbed pollutant were larger on the large grain size gabion than those on the small grain size gabion, and the coefficients of curvature were smaller on the large grain size gabion than those of the small grain size gabion. The adsorption rates were dependent on the grain size of packed gravel. The rates were smaller on inlet and outlet than those on middle place on the series of gabion.

  • PDF

A Feasibility Analysis on Steel Net Gabion Reinforcement of Reinforced Earth-retaining Wall (자연친화적인 보강토 옹벽의 철판망 gabion 보강재 타당성 분석)

  • Chung, Dae-Seouk
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Steel net gabion is eco-friendly retaining wall structure showing favorable ability to overcome construction and environmental restriction and also to resist corrosion, chemical attack and degradation. This paper is dealt with the applicability of gabion metal net as a substitution of existing strengthening material. Pull out test was carried out to verify the applicability of gabion metal net. According to results, the increase of surcharge loading and horizontal load resulted in a yield of metal net. The stress at the time of yield was in the range of elasticity. Accordingly, gabion metal net can be substituted for existing geogrid and there is a need for experiment and analysis of arrangement direction and durability of gabion steel net.

Analysis Gabion Works in Cut-slopes Characteristics and Scenic Preference (도로비탈면 돌망태공법의 특성 및 경관선호도 분석)

  • Park, Jae-Hyeon;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.206-212
    • /
    • 2015
  • This study was carried out to assess the characteristics of gabion on road cut-slopes, and analyze the scenic view preference for the gabion in Korea. 97 gabion sites from road cut-slopes were selected and were classified into 10 application types of gabion. The classification types of gabion were mostly related to the erosion and collapse prevention across road cut-slope. Gabion work sites in this study were classified into 30 sites (31%) for below 10% gradient, followed by 31 sites (32%) for 11~30% gradient, 20 sites (21%) for 31~50% gradient, and 16 sites (16%) for 51~80% gradient. Gabion works were constructed mostly in low gradient than in high gradient. 34 gabion sites (35%) among 97 sites were not covered by vegetation and 52 gabion sites (54%) showed vegetation cover rates of 1~30%. On the scenic preference analysis, public groups understood that the scenic view of gabion in cutting slope can be improved by vegetation cover, whereas expert groups prefer to scenic view of gabion only. However, expert groups encouraged subsequently vegetation covering to improve scenic view during gabion works in cutting slope.

Analysis of the Forest Road Cut-slope Erosion Control and Rehabilitation Techniques using Gabion Systems with Vegetation Base Materials (임도비탈면에 시공한 식생기반재돌망태의 침식방지 및 녹화효과 분석)

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • Analysis of new approaches to achieve naturally good ecological potential of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials to prevent slope failure and erosion, in the area with highly erodible soil. Existing gabion systems can be divided into monolithic and modular system and can be divided into ten subtypes according to the purpose of establishment and combination of other measures. As a result on the monitoring of erosion amount from forest road cut-slopes in the test applications, the order of erosion amount from largest to smallest is as follows: the curved road cut-slope site where normal gabion system was established 5,840 $cm^3$; the control site 5,833 $cm^3$; the straight road cut-slope site where normal gabion system was established 5,621 $cm^3$; the curved road cut-slope site where the new gabion system was established 4,298 $cm^3$; and the straight road cut-slope site where the new gabion system 4,117 $cm^3$. Therefore, the result shows that the new gabion system is more effective than the normal gabion system to reduce erosion amount from forest road cut-slopes. During the study period, vegetation coverages of the straight and curved road cut-slope site where the new gabion system was established were about 56(30~85)% and about 45(28~65)%, so average vegetation coverage of the sites where the new gabion systems was established was higher than the sites where the normal gabion systems was established. Therefore, it was concluded that the new gabion system can be more effective for cut-slope revegetation.

A Study on the Hydraulic Characteristics for River Bank Protection using Gabion Mattress (호안용 돌망태 매트리스의 수리학적 특성 연구)

  • 배상수;이경욱;허창환;지홍기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.81-98
    • /
    • 2002
  • The condition of initial movement far the river bank protection using rip rap is a limit condition beyond which the lining is progressively destroyed as the separate elements are removed by the flow. In the case of the river bank protection using gabion mattress, however, after the initial movement the containment offered by the mesh remains. A new situation of equilibrium with a deformed river bank protection using gabion mattress is obtained, allowing it to withstand more severe conditions without compromising the resistance and without further deformation. Shield's coefficient for the river bank protection using gabion mattress is twice the value of that fur river bank protection using rip rap. This means that with the same hydraulic behavior conditions, the average dimension of the rocks to be used in the river bank protection using gabion mattress is half that of river bank protection using rip rap rock. When the same size rocks are used the allowable velocity for the river bank protection using gabion mattress is more than twice, even as much as 3 or 4 times that for river bank protection using rip rap.

Effects of Energy-Dissipation by Stepped Gabion Slope in Rapidly Varied Flow (계단식 Gabion의 경사에 따른 급변류의 에너지 소산효과)

  • Kuem, Do-Hun;Lee, Chang-Yun;Bae, Sang-Soo;Lee, Seung-Yun;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1605-1610
    • /
    • 2006
  • 계단식 Gabion 낙차공은 다공체 구조물로서 시공하기 쉽고 안정적이며, 하천유수에 대하여 저항성이 있어 하천구조물로서 널리 자주 사용되고 있다. Gabion은 다공체로서 유수력을 쉽게 흡수함으로써 감세지 계단표면의 위치에너지를 소산시키는데 매우 효과적이다. Stephenson은 1/10 축적을 가진(투수성이 있고 하천낙차공에만 적용되는 투수성 상류면을 가진 높이 4m까지의) 계단식 Gabion을 월류 실험한 바가 있으며, 그 연구결과가 실무에서 인용되고 있다. 그러나 본 연구에서는 급변류의 에너지 소산효과를 조사하기 위하여 중력이 다른 힘들보다 지배적이므로 Froude 상사법칙을 이용하고 1/1, 1/2, 1/3 경사를 가진 계단을 적용하였다. 실험에서는 경사를 가진 높이 4m 계단식 위어와 게비온 감세지 실험, 계단모형실험(보통구조, 층상구조, 끝단이 올라간 구조, 턱을 가진 구조), 격리수맥흐름, 부분수맥흐름으로 제안하여 경사에 따른 급변류의 에너지 소산효과에 대한 결과를 얻을 수 있었다.

  • PDF

Experimental Study on a Gabion Wall Reinforced by a Relatively Short Reinforcement (짧은 보강재가 부착된 가비온 옹벽의 모형실험)

  • Kim, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • The Gabion wall have been developed on the basis of experimental works and the method is actively used in the actual site. In this study, a relatively small-scale experiment was carried out to figure out the failure behavior of a Gabion wall reinforced by a relatively short wire net to enlarge the axial tensile resistance which is important factor in the stability. The horizontal and vertical displacement of Gabion wall have been acquired and analyzed. Furthermore the results are compared with the test results for a non-reinforced Gabion wall that is performed at the same condition.

  • PDF

Using Gabion Systems with Vegetation Base Materials on Stability Analysis for the Forest Road Cut-slope Rehabilitation Techniques (임도비탈면의 복원을 위한 식생기반재 돌망태의 안정성 분석)

  • Park, Jae-Hyeon;Jeong, Yong-Ho;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.106-113
    • /
    • 2009
  • In this study, stability of the new gabion system with vegetation base materials was analysed. New gabion system with vegetation base materials is a new approach which has been developed to achieve lope stabilization and revegetation of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials. Results from stability analysis are as follows. For the soil density, the angle of internal friction and unit weight of the rock fill was assumed to be $1.90g/cm^3$, $30^{\circ}$ and $2.30t/m^3$, respectively, the slope stability analysis showed that the new gabion system couldn't require any poles to fix it up, and could keep stable during both rainy and dry seasons. As the results of checks against overturning and sliding, the retaining wall with. the new gabion system could produce suitable factors of safety for overturning and sliding. Vegetation established on the surface of the new gabion systems indirectly can help to increase slope stability by prevention of surface erosion. Consequently, the new gabion system with vegetation base materials could achieve the desired effect on slope stabilization as much as existing gab ion system could do, and could promote rapid establishment of vegetation on cut-slopes.