• Title/Summary/Keyword: gX signal sequence

Search Result 6, Processing Time 0.018 seconds

Constructions of a Transfer Vector Containing the gX Signal Sequence of Pseudorabies Virus and a Recombinant Baculovirus

  • Lee, Hyung-Hoan;Kang, Hyun;Kim, Jung-Woo;Hong, Seung-Kuk;Kang, Bong-Joo;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.541-547
    • /
    • 1999
  • Constructions of a transfer vector and a recombinant baculovirus using the thymidine kinase gene of the Herpes simplex virus type 1 strain F (HSV -1) were carried out. Newly cloned transfer vector, pHcgXIIIB, was constructed by insertion of the glycoprotein gX gene signal peptide sequence of Pseudorabies virus into the baculovirus vector pHcEV-IV. The gX sequence was inserted just downstream from the promoter for the polyhedrin gene of the Hyphantria cunea nuclear polyhedrosis virus (HcNPV). HSV-1 thymidine kinase(tk) gene (1.131 kb) was used as a candidate gene for transferring into the baculovirus expression system. The tk gene was inserted into a BamHI site downstream from the gX sequence-promoter for the polyhedrin gene in the pHcgXIIIB transfer vector and was transferred into the infectious lacZ-HcNPV expression vector. Recombinant virus was isolated and was named gX-TK-HcNPV. The recombinant virus produced a 45 kDa gX-TK fusion protein in Spodoptera frugiperda cells, which was confirmed by Western blot analysis. Microscopic examination of gX-TK-HcNPV-infected cells revealed normal multiplication. Fluorescent antibody staining indicated that the gX-TK fusion protein was present in the cytoplasm. These results indicated that the transfer vector successfully transferred the gX-tk gene into the baculovirus expression system.

  • PDF

Cloning, Sequencing and Baculovirus-based Expression of Fusion-Glycoprotein D Gene of Herpes Simplex Virus Type 1 (F)

  • Uh, Hong-Sun;Choi, Jin-Hee;Byun, Si-Myung;Kim, Soo-Young;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.371-378
    • /
    • 2001
  • The Glycoprotein D (gD) gene of the HSV-1 strain F was cloned, sequenced, recombinated into the HcNPV (Hyphantria cunea nuclear polyhedrosis virus) expression vector and expressed in insect cells. The gD gene was located in the 6.43 kb BamHI fragment of the strainF. The open reading frame (ORF) of the gD gene was 1,185 by and codes 394 amino acid residues. Recombinant baculoviruses, GD-HcNPVs, expressing the gD protein were constructed. Spodoptera frugiperda cells, infected with the recombinant virus, synthesized a matured gX-gD fusion protein with an approximate molecular weight of 54 kDa and secreted the gD proteins into the culture media by an immunoprecipitation assay The fusion gD protein was localized on the membrane of the insect cells, seen by using an immunofluorescence assay The deduced amino acid sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane sequence. These results indicate the utility of the HcNPV-insect cell system for producing and characterizing eukaryotic proteins.

  • PDF

Analysis of antigenic domain of GST fused major surface protein (p30) fragments of Toxoplasma gondii (융합단백질로 발현된 톡소포자충의 주요막단백질(p30) 절편의 항원성)

  • 남호우;임경심
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.2
    • /
    • pp.135-142
    • /
    • 1996
  • Antigenic domain of jai or surface protein (p30) of Toxoplosmc Sondii was analyzed after polymerase chain reaction (PCR) of its gene fragments. Hydrophilic or hydrophobic moiety of amino acid sequences were expressed as glutathione S-transferase (G57) fusion proteins. Fragments of p30 gene were as follows: 737, total p30 open reading frame (ORF) ; S28, total ORF excluding N-terminal signal sequence and C-terminal hydrophobic sequence; Al9, N-terminal 2/3 parts of A28; A19, N-terminal 2/3 of S28; P9, C-terminal 2/3 part of S28; Z9. middle 1/3 of S28; and 29, C-terminal 1/3 of S28. respectively. Primer of each fragment was synthesized to include clamp sequence of EcoR I restriction site. PCR amplified DNA was inserted info GST (26 kDa) expression vector, PGEX-47-1 to transform into Escheri,hia coei (.JM105 strain). G57 fusion proteins were expressed with IPTG induction as 63. 54, 45, 45, 35, 36. and 35 kDa proteins measured by SDS-PAGE. Each fusion protein was confirmed with G57 detection kit. Western blot analysis with the serum of a toxoplasmosis patient revealed antigenicity in proteins expressed by T37. S28, and Al9 but not those by Pl8. X9, Y10, and Z9. Antigenicity of p30 seems to be located either in N-terminal 115 part in the presence of middle 1/3 part or in the oligopeptides between margins of the first and second 1/3 parts.

  • PDF

Molecular Cloning, Purification, and Characterization of a Cold-Adapted Esterase from Photobacterium sp. MA1-3

  • Kim, Young-Ok;Heo, Yu Li;Nam, Bo-Hye;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.311-318
    • /
    • 2013
  • The gene encoding an esterase from Photobacterium sp. MA1-3 was cloned in Escherichia coli using the shotgun method. The amino acid sequence deduced from the nucleotide sequence (948 bp) corresponded to a protein of 315 amino acid residues with a molecular weight of 35 kDa and a pI of 6.06. The deduced protein showed 74% and 68% amino acid sequence identities with the putative esterases from Photobacterium profundum SS9 and Photobacterium damselae, respectively. Absence of a signal peptide indicated that it was a cell-bound protein. Sequence analysis showed that the protein contained the signature G-X-S-X-G included in most serine-esterases and lipases. The MA1-3 esterase was produced in both soluble and insoluble forms when E. coli cells harboring the gene were cultured at $18^{\circ}C$. The enzyme was a serine-esterase and was active against $C_2$, $C_4$, $C_8$ and $C_{10}$ p-nitrophenyl esters. The optimum pH and temperature for enzyme activity were pH 8.0 and $30^{\circ}C$, respectively. Relative activity remained up to 45% even at $5^{\circ}C$ with an activation energy of 7.69 kcal/mol, which indicated that it was a cold-adapted enzyme. Enzyme activity was inhibited by $Cd^{2+}$, $Cu^{2+}$, $Zn^{2+}$, and $Hg^{2+}$ ions.

High Level Production of Glycoprotein H of HSV-1 (F) Using HcNPV Vector System

  • Kang, Hyun;Cha, Soung-Chul;Han, You-Jin;Park, In-Ho;Lee, Min-Jung;Byun, Si-Myung;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.483-492
    • /
    • 2000
  • The Herpes simplex virus type 1 (HSV-1) strain F glycoprotein H (gH) gene in the pHLB-4 plasmid was recombinated into a baculovirus expression vector (lacZ-HcNPV) to construct a recombinant virus GH-HcNPV expressing gH. The sequences of gH and its expression were analyzed. The gH gene was located in the 6.41 kb BglII fragment. The open reading frame (ORF) of the gH gene was 2,517 bp and codes 838 amino acid residues. Insect cells infected with this recombinant virus synthesized a high level of the matured and gX-gH fusion protein with approximately 112 kDa. The fusion gH protein was localized on the membrane of the insect cells as seen by using immunofluorescence assay and accumulated in the cultured media by the SDS-PAGE and immunoprecipitation assays. The amino acid sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane sequence. Antibodies raised in mice to this recombinant protein recognized viral gH and neutralized the infectivity of HSV-1 in vitro. These results demonstrate that it is possible to produce a mature protein by gene transfer in eukaryotic cells, and indicate the utility of the HcNPV-insect cell system for producing and characterizing eukaryotic proteins. Furthermore, the neutralizing antibodies would appear to protect mice against HSV; accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Identification of Six Single-Strand Initiation (ssi) Signals for Priming of DNA Replication in Various Plasmids

  • Jeong, Jin-Yong;Seo, Hak-Soo;Kim, Ho-Yeon;Cho, Moo-Je;Bahk, Jeong-Dong
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.336-341
    • /
    • 1995
  • Using a mutant M13 phage derivative lacking a great part of the complementary strand synthesis origin, we identified six single-strand initiation (ssi) signals for DNA replication in pACYC184, pLG214, pGKV21, and pDPT270 plasmids, and named them $ssiA_{YC}$, $ssiA_{LG}$, $ssiB_{LG}$, $ssiA_{KV}$, $ssiA_{PT}$, and $ssiB_{PT}$, respectively. Two of them were from pDPT270, one from downstream the on of pACYC184, two from pLG214, one from upstream the plus origin of pGKV21. Introduction of these ssi signals into the deleted $ori_c$ site of a mutant filamentous M13 phage ($M13{\Delta}lac182$) resulted in the restoration of growth activity of this phage. These ssi signals were classified into a number of groups on the basis of sequence similarity. $ssiA_{YC}$ and $ssiA_{LG}$ show extensive sequence homology to the n'-site (primosome assembly sites) of ColE1, whereas $ssiB_{PT}$ is homologous to the n'-site of ${\Phi}X174$. $ssiA_{PT}$ belongs to G4-type ssi signals which require only dnaG primase and SSB protein for the priming of replication. In addition, possible biological roles of these ssi signals are discussed.

  • PDF