• Title/Summary/Keyword: gDNA

Search Result 3,020, Processing Time 0.033 seconds

cDNA Sequence and mRNA Expression of a Putative Alcohol Dehydrogenase from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Lee, Young-Sin;Ryu, Kang-Sun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • Alcohol dehydrogenases (AHDs) are enzymes responsible for the catalysis of the reversible conversion of various alcohols to their corresponding aldehydes and ketonesis. Until now cDNA sequences of ADH gene is informed exclusively from several diptean species. We describe here the cDNA sequence and mRNA expression of a putative ADH gene from the mole cricket, Gryllotalpa orientalis, and phylogenetic relationships among known insect ADHs. The G. orientalis ADH cDNA sequences comprised of 798 bp encoding 266 amino acid residues. The multiple sequence alignment of G. orientalis ADH gene and known dipteran ADHs shared 100% identity in the nine amino acid residues that are important for the enzymatic activity in Drosophila melanogaster. Percent sequence identity ranged from 25% to 32% among all insect ADHs including both types of ADHs. G. orientalis ADH gene showed no clear resemblance to any dipteran species and type. Phylogenetic analysis of the deduced amino acid sequences of G. orientalis ADH gene with available dipteran ADH genes including both types of ADHs further confirmed that the G. orientalis ADH gene is not clearly assigned to either type of ADHs. Northern blot analysis revealed a stronger signal in the fat body than midgut and epidermis, indicating that the fat body possibly is a main site for the synthesis of the G. orientalis ADH protein.

Global Optimum Searching Technique Using DNA Coding and Evolutionary Computing (DNA 코딩과 진화연산을 이용한 함수의 최적점 탐색방법)

  • Paek, Dong-Hwa;Kang, Hwan-Il;Kim, Kab-Il;Han, Seung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.538-542
    • /
    • 2001
  • DNA computing has been applied to the problem of getting an optimal soluting since Adleman's experiment. DNA computing uses strings with various length and four-type bases that makes more useful for finding a global optimal solutions of the complex multi-modal problems This paper presents DNA coding method finding optimal solution of the multi-modal function and compares the efficiency of this method with the genetic algorithms(GA). GA searches efffectively an optimal solution via the artificial evolution of individual group of binary string and DNA coding method uses DNA molecules and four-type bases denoted by the A(Ademine) C(Gytosine);G(Guanine)and T(Thymine). The selection, crossover, mutation operators are applied to both DNA coding algorithm and genetic algorithms and the comparison has been performed. The results show that the DNA based algorithm performs better than GA.

  • PDF

Binding Site of Spermine at Poly$[d(A-T)_2]$ and Poly$[d(G-C)_2]$ (Poly$[d(A-T)_2]$, Poly$[d(G-C)_2]$와 스퍼민의 결합 형태에 관한 연구)

  • Yun, Byeong Hwa;Jeon, Sun Hee;Song, Young Dae;Cho, Tae Sub;Kim, Seog K.
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.506-511
    • /
    • 1998
  • When the spermine, which is one of the polyamines containing cation in vivo, binds to DNA, it can increase the stability of DNA. At the same time, it can cause B-form to Z-form transformations of DNA. However, because we cannot determine the binding geometry of the spermine to DNA by using spectroscopic methods, nobody can show the accurate binding mechanism of a DNA-spermine complex. Thus, we used DAPI as a spectroscopic probe of spermine, which binding geometry was well known. At the result of base selective binding geometry of spermine to synthetic DNA, the concentration of spermine gets higher, it grows the hydrophobic environment of DAPI which bound the minor groove of adenine-thymine base pair. Simultaneously, spermine seems to bridge the backbones around the minor groove of $poly[d(A-T)_2]$. So that, the intensity of fluorescence spectrum of that shows sudden increasement. In guanine-cytocine base pair, $poly[d(G-C)_2]$, we can suppose that spermine bind to the major groove of that, shoving out the DAPI which is partially intercalated between the base pocket across the major groove of it. In both cases, spermine doesn't show the base selectivity against to DNA.

  • PDF

Characterization of 18S rDNA in Polygonatum spp. Collections (둥굴레속 식물의 18S rDNA 염기서열의 특성)

  • Yun, Jong-Sun;Kim, Ik-Hwan;Park, Jae-Seong;Lee, Cheol-Hee;Hong, Eui-Yon;Yun, Tae;Jong, Seung-Keun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.3
    • /
    • pp.178-182
    • /
    • 2006
  • This study was conducted to investigate the variation in sequence, the base composition and the sequence similarity of 18S rDNA (18S ribosomal RNA coding region) in the 10 Polygonatum spp. collections. The entire 18S rDNA region of 10 Polygonatum spp. collections ranged from 913 bp to 914 bp. There were 8 variable sites in the entire 18S region, and they were attributable to nucleotide substitution and deletion. $T{\rightarrow}C$ transition happened in 4 sites, and $A{\rightarrow}G$ transition happened in 1 site. $C{\rightarrow}A$ transversion happened in 1 site, and deletion happened in 2 sites. Transition rates were five times that of transversion. Base compositions of 18S rDNA were $23.09{\sim}23.33%$ in adenine, $23.33{\sim}23.52%$ in guanine, $25.60{\sim}25.85%$ in thymine and $27.38{\sim}27.79%$ in cytosine. The A + T content of 18S rDNA of 10 Polygonatum spp. collections averages 48.99%, ranging from 48.80% to 49.18%, and the G + C content averages 51.01%, ranging from 50.82% to 51.20%. Pairwise sequence comparisons indicated that 18S rDNA sequence similarity ranged from 99.7% to 100%.

Non-CpG Methylation of Pre-1 Sequence in Pig SCNT Blastocysts (돼지 체세포복제 배반포에서 Pre-1 영역의 Non-CpG 메틸화 양상)

  • Ko, Yeoung-Gyu;Im, Gi-Sun;Lee, Hwi-Cheul;Cho, Sang-Rae;Choi, Sun-Ho;Choe, Chang-Yong;Lee, Poong-Yeon;Cho, Chang-Yeon;Cho, Jae-Hyeon;Yoo, Young-Hee
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • Previously, we reported that the osmolarity conditions in the satellite region were affected CpG DNA methylation status while Pre-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. This study was conducted to investigate the DNA methylation status of repeat sequences in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaCl or 0.05 M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. The DNA methylation status of the Pre-1 sequences in blastocysts was characterized using a bisulfite-sequencing method. Intriguingly, in the present study, we found the unique DNA methylation at several non-CpG sequences at the Pre-1 sequences in all groups. The non-CpG methylation was hypermethylated in all three groups, including in vivo group (86.90% of PZM-3; 83.87% of NaCl; 84.82% of sucrose; 90.94% of in vivo embryos). To determine whether certain non-CpG methylated sites were preferentially methylated, we also investigated the methylation degree of CpA, CpT and CpC. Excepting in vivo group, preference of methylation was CpT>CpC>CpA in all three groups investigated. These results indicate that DNA methylation of Pre-1 sequences was hypermethylated in CpG as well as non-CpG site, regardless modification of osmolarity in a culture media.

Sequence Analysis of Nuclear 18s rDNA from Porphyra dentata (Rhodophyta) in Korea (한국산 잇바디돌김 (Porphyra dentata)의 핵 18S rDNA 염기선열 분석)

  • Long-Guo Jin
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.427-432
    • /
    • 2002
  • Nuclear 18S ribosomal RNA gene (18S rDNA or SSU rDNA) from the Porphyra dentata tissue was amplified and sequenced. Complete 18S rDNA has an 1822 bp exon and a 512 bp intron. The G+C contents of exon and intron were 49% and 55%, respectively. The exon sequence showed 97.1% homology to the GenBank accession number AB013183 of the Japanese P. dentata. The intron region that is inserted in upstream between 568 and 569 showed 52.1% homology to the AB013183.

The Effect of Carnosine Extracted from Eels Anguilla japonica on Oxidative DNA Damage Induced by Hydrogen Peroxide and the DNA Repair Capacity of Human Leukocytes (뱀장어(Anguilla japonica) 추출 Carnosine이 과산화수소로 유도된 인체 백혈구의 DNA 손상과 Repair에 미치는 효과)

  • Song, Ho-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.520-526
    • /
    • 2017
  • Carnosine was recently reported to protect against the DNA damage induced by oxidative stress. In this study, we investigated the protective effect of eel Anguilla japonica carnosine extracts prepared using different methods (heat treatment extracts, HTEs; ion exchange chromatography, IEC; ultrafiltration permeation, UFP) on leukocyte DNA damage using the comet assay. Human leukocytes were incubated with extracts of eel carnosine at concentrations (of 10, 50, $100{\mu}g/mL$), and then subjected to an oxidative stimulus [$200{\mu}M$ hydrogen peroxide ($H_2O_2$)]. Pretreatment of the cells for 30 min with carnosine significantly reduced the genotoxicity of $H_2O_2$ measured as DNA strand breaks. The protective effects of the three types of extract (HTE, IEC, and UFP) increased with concentration. At the highest concentration (100 g/mL). there were no statistical differences in oxidative damage between each extract treatment and PBS-treated negative controls. When leukocytes were incubated with carnosine for 30 min after exposure to $H_2O_2$. the protective ability of each extract changed. Therefore, eel carnosine inhibits the $H_2O_2$ induced damage to cellular DNA in human leukocytes, supporting the protective effect of this compound against oxidative damage.

Protective Effects of Ulva lactuca Methanol Extracts against the Ultraviolet B-induced DNA Damage (자외선 B에 의해 유도되는 DNA 상해에 대한 참갈파래 메탄올 추출물의 보호 효과)

  • Jeong, Seula;Chung, Yuheon;Park, Jong Kun
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.3
    • /
    • pp.309-316
    • /
    • 2020
  • In this study, we investigated the protective effects of Ulva lactuca methanol extracts against ultraviolet B (UVB)-induced DNA damage in HaCaT cells. First, the contents of general and antioxidative nutrient contents of Ulva lactuca were measured. The moisture, carbohydrate, crude protein, crude fat and ash were 14.01%, 44.80%, 23.19%, 3.10% and 14.90%, respectively. Magnesium that acts as DNA repair enzyme cofactor was the most abundant mineral followed by Ca, P and Fe. The total phenolic and anthocyanoside contents of Ulva lactuca were 2.69 mg/g and 0.13 mg/g, respectively. Cells treated with Ulva lactuca methanol extracts for 24 hours post UVB exposure increased cell viability in a concentration-dependent manner compared to the non-treated control. Also, Ulva lactuca methanol extracts decreased the levels of UVB-induced DNA damage such as cyclobutane pyrimidine dimer and DNA damage response (DDR) proteins such as p-p53 and p21. These results suggest that Ulva lactuca methanol extracts comprising physiological active substances such as Mg, polyphenols and anthocyanosides promote DNA repair by regulating genes related with DDR.

Molecular Analysis of Complete SSU to LSU rDNA Sequence in the Harmful Dinoflagellate Alexandrium tamarense (Korean Isolate, HY970328M)

  • Ki, Jang-Seu;Han, Myung-Soo
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.155-166
    • /
    • 2005
  • New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A. tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

Use of the Comet Assay to Assess DNA Damage in Hemocytes and Gill of Oyster(Crassostrea gigas) Exposed to Pyrene and Benzo(a)pyrene (Pyrene과 Benzo(a)pyrene에 노출된 굴의 혈구세포과 아가미 세포에서의 DNA손상 측정을 위한 Comet assay의 이용)

  • 김기범;배세진
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.196-201
    • /
    • 2003
  • Sessile organisms such as the oyster Crassostrea gigas have been given much attention as a potential biomonitoring indicator to assess the impact of toxicants on aquatic organism. In this study, we exposed cells isolated from gill of oyster (Crassostrea gigas) to hydrogen peroxide in vitro. In addition oysters were in vivo exposed to pyrene and benzo(a)pyrene at various concentrations for 2 weeks. Comet assay was used to detect DNA single strand breaks and to investigate the application of this technique as a tool for aquatic biomonitoring. Hydrogen peroxide increased DNA single strand break with increasing concentration after 30 minutes exposure in vitro. Pyrene and benzo(a)pyrene caused DNA damage only at very high concentration (100 $\mu\textrm{g}$/L or 1000 $\mu\textrm{g}$/L) at two week exposure in vivo. DNA damage was relatively higher at hemocyte than at gill. It suggested that metabolized PAHs are transferred to hemolymph from digestive gland which have a relatively high enzyme activity, and attacked the DNA of hemocyte, while gill accumulated PAHs without degrading them to their metabolites due to low enzyme activity at gill. Both in vitro and in vivo exposure experiments showed that the comet assay is an effective tool on screening whether the organism are exposed to genotoxic contaminants.