• Title/Summary/Keyword: g conditions

Search Result 7,726, Processing Time 0.048 seconds

Studies on the Utilization of Plant Pigments -II. Stability of Anthocyanin Pigments in Ganges Amaranth- (식물성(植物性) 색소(色素)의 이용(利用)에 관(關)한 연구(硏究) -II. 꽃잎맨드라미(Amaranthus tricolor L.) Anthocyanin색소(色素)의 안정성(安定性)-)

  • Kim, Kwang-Soo;Lee, Sang-Jik;Yoon, Tai-Heon
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.42-49
    • /
    • 1979
  • In order to evaluate the utility of the anthocyanins of Amaranthys tricolor L. as an edible pigment, the present study was undertaken to investigate the effects of pH. temperature, ascorbic acid, sugars and their degradation products, quercetin, thiourea, sodium pyrophosphate and metal ions on the stability of the anthocyanins in the model systems. The results obtained from this study were as follows. 1. The degradation of total anthocyanins was retarded as the pH levels decreased from 8.0 to 1.0. At pH 1.0, however. the initial degradation reaction proceeded faster than at pH 2.0 to 3.0 2. On heating in buffered aqueous solution at $80^{\circ}C$, the total anthocyanin content was higher at pH 2.0 than other pH levels. Increasing the storage temperature accelerated greatly the pigment degradation. In darkness at $40^{\circ}C$, after 10 days, only 19% of the original amount was left, while at $2^{\circ}C$, under the same conditions of storage, approximately 90% of the pigment was retained. The half-life of the pigment, 63.0 days at $2^{\circ}C$, shortened to 1. 7 days at $40^{\circ}C$. 3. An increase in ascorbic arid concentration from 0. 15 to 0.50 mg/ml lowered the anthocyanin retention. 4. There was no significant difference between glucose and fructose in anthocyanin degradation effect. Furfural was more effective than other sugar degradation products, formic acid or levulinic acid in accelerating anthocyanin breakdown. 5. Neither quercetin nor sodium pyrophosphate had a protective effect on the anthocyanins in the presence of ascorbic acid, while, in the systems 0.5 or 1 mg/ml of thiourea with $150{\;}{\mu}g/ml$ of ascorbic acid, the loss of anthocyanins was significantly reduced. 6. Both mercuric and cupric ions in 30 ppm greatly accelerated anthocyanin degradation.

  • PDF

Enhanced Production of Oleanolic Acid by the Elicitation in Oldenlandia diffusa Suspension Cell Cultures (백화사설초의 현탁세포배양에서 Elicitation에 의한 Oleanolic acid 생산성 증대)

  • Lee Yong-Il;Kim Dong-Il
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.471-477
    • /
    • 2004
  • Oldenlandia diffusa is a Chinese medicinal herb with antitumor activity capable of suppressing the growth of some cancer cell lines. Oleanolic acid and ursolic acid are triterpenoid compounds that exist in Oldenlandia diffusa. Recently, these have been noted for anti-inflammatory, anti-cancer, and hepato-protective effects. Application of both plant growth regulators, 2,4-D and kinetin, was found to be essential for the initiation of callus and suspension cells. Leaf blades of Oldenlandia diffusa was transformed into callus on Schenk and Hildebrandt medium supplemented with 0.5 mg/L 2,4-D and 0.1 mg/L kinetin, while optimum initiation condition for suspension cells of Oldenlandia diffusa was determined to be 0.75 mg/L 2,4-D and 0.1 mg/L kinetin. Chromatographic separation of oleanolic acid from its derivatives was achieved using Rexchrom S5-100-ODS column. Analytical conditions for oleanolic acid were determined as follows: flow rate at 1.0 mL/min, UV length at 200 nm and mobile phase of $80\%$ acetonitrile and $20\%$ water. Production of secondary metabolites was found to be increased by the treatment with elicitors or signal transducers. The maximum production of oleanolic acid was 99.6 mg/L in cultures with 0.5 mM salicylic acid. It is 1.74 times higher than that of control.

Principle and Recent Advances of Neuroactivation Study (신경 활성화 연구의 원리와 최근 동향)

  • Kang, Eun-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.172-180
    • /
    • 2007
  • Among the nuclear medicine imaging methods available today, $H_2^{15}O-PET$ is most widely used by cognitive neuroscientists to examine regional brain function via the measurement of regional cerebral blood flow (rCBF). The short half-life of the radioactively labeled probe, $^{15}O$, often allows repeated measures from the same subjects in many different task conditions. $H_2^{15}O-$ PET, however, has technical limitations relative to other methods of functional neuroimaging, e.g., fMRI, including relatively poor time and spatial resolutions, and, frequently, insufficient statistical power for analysis of individual subjects. However, recent technical developments, such as the 3-D acquisition method provide relatively good image quality with a smaller radioactive dosage, which in turn results in more PET scans from each individual, thus providing sufficient statistical power for the analysis of individual subject's data. Furthermore, the noise free scanner environment $H_2^{15}O$ PET, along with discrete acquisition of data for each task condition, are important advantages of PET over other functional imaging methods regarding studying state-dependent changes in brain activity. This review presents both the limitations and advantages of $^{15}O-PET$, and outlines the design of efficient PET protocols, using examples of recent PET studies both in the normal healthy population, and in the clinical population.

Optimal Conditions for As(III) Removal by Filtration System Packed with Different Ratio of Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사 충전비를 달리한 여과시스템에서 3가 비소 제거의 최적 조건)

  • Chang, Yoon-Young;Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1186-1191
    • /
    • 2006
  • Removal efficiency of As(III) through oxidation and adsorption in column reactors was investigated at different ratios of manganese-coated sand(MCS) and iron-coated sand(ICS) : MCS-alone, ICS-alone and both of ICS and MCS. The breakthrough of arsenic immediately occurred from a column reactor with MCS-alone. However, most of the arsenic present in the effluent was identified as As(V) due to the oxidation of As(III) by MCS. While five-times delayed breakthrough of arsenic was observed from a column reactor with ICS-alone. At a complete breakthrough of arsenic, the removed As(III) was 36.1 mg with 1 kg ICS. To find an optimum ratio of ICS and MCS in the column packed with both ICS and MCS, the removal efficiency of As(III) was investigated at three different ratios of ICS/MCS with a fixed amount of ICS. The breakthrough time of arsenic was quite similar in the different ratios ICS/MCS. However, much slower breakthrough of arsenic was observed as the ratio of ICS/MCS decreased. As the ratio of ICS/MCS decreased the concentration of As(III) in the effluent decreased and then showed below 50 ppb at an equal amount of ICS and MCS, suggesting more efficient oxidation of As(III) by greater amount of MCS. When a complete breakthrough of arsenic occurred, the removed total arsenic with an equal amount of ICS and MCS was 68.5 mg with 1 kg of filter material.

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.

The Suitable Region and Site for 'Fuji' Apple Under the Projected Climate in South Korea (미래 시나리오 기후조건하에서의 사과 '후지' 품종 재배적지 탐색)

  • Kim, Soo-Ock;Chung, U-Ran;Kim, Seung-Heui;Choi, In-Myung;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.162-173
    • /
    • 2009
  • Information on the expected geographical shift of suitable zones for growing crops under future climate is a starting point of adaptation planning in agriculture and is attracting much concern from policy makers as well as researchers. Few practical schemes have been developed, however, because of the difficulty in implementing the site-selection concept at an analytical level. In this study, we suggest site-selection criteria for quality Fuji apple production and integrate geospatial data and information available in public domains (e.g., digital elevation model, digital soil maps, digital climate maps, and predictive models for agroclimate and fruit quality) to implement this concept on a GIS platform. Primary criterion for selecting sites suitable for Fuji apple production includes land cover, topography, and soil texture. When the primary criterion is satisfied, climatic conditions such as the length of frost free season, freezing risk during the overwintering period, and the late frost risk in spring are tested as the secondary criterion. Finally, the third criterion checks for fruit quality such as color and shape. Land attributes related to these factors in each criterion were implemented in ArcGIS environment as relevant raster layers for spatial analysis, and retrieval procedures were automated by writing programs compatible with ArcGIS. This scheme was applied to the A1B projected climates for South Korea in the future normal years (2011-2040, 2041-2070, and 2071-2100) as well as the current climate condition observed in 1971-2000 for selecting the sites suitable for quality Fuji apple production in each period. Results showed that this scheme can figure out the geographical shift of suitable zones at landscape scales as well as the latitudinal shift of northern limit for cultivation at national or regional scales.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Dry Etching of GaAs and AlGaAs in Diffuion Pump-Based Capacitively Coupled BCl3 Plasmas (확산펌프 기반의 BCl3 축전결합 플라즈마를 이용한 GaAs와 AlGaAs의 건식 식각)

  • Lee, S.H.;Park, J.H.;Noh, H.S.;Choi, K.H.;Song, H.J.;Cho, G.S.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.288-295
    • /
    • 2009
  • We report the etch characteristics of GaAs and AlGaAs in the diffusion pump-based capacitively coupled $BCl_3$ plasma. Process variables were chamber pressure ($50{\sim}180$ mTorr), CCP power ($50{\sim}200\;W$) and $BCl_3$ gas flow rate ($2.5{\sim}10$ sccm). Surface profilometry was used for etch rate and surface roughness measurement after etching. Scanning electron microscopy was used to analyze the etched sidewall and surface morphology. Optical emission spectroscopy was used in order to characterize the emission peaks of the $BCl_3$ plasma during etching. We have achieved $0.25{\mu}m$/min of GaAs etch rate with only 5 sccm $BCl_3$ flow rate when the chamber pressure was in the range of 50{\sim}130 mTorr. The etch rates of AlGaAs were a little lower than those of GaAs at the conditions. However, the etch rates of GaAs and AlGaAs decreased significantly when the chamber pressure increased to 180 mTorr. GaAs and AlGaAs were not etched with 50 W CCP power. With $100{\sim}200\;W$ CCP power, etch rates of the materials increased over $0.3{\mu}m$/min. It was found that the etch rates of GaAs and AlGaAs were not always proportional to the increase of CCP power. We also found the interesting result that AlGaAs did not etched at 2.5 sccm $BCl_3$ flow rate at 75 mTorr and 100 W CCP power even though it was etched fast like GaAs with more $BCl_3$ gas flow rates. By contrast, GaAs was etched at ${{\sim}}0.3{\mu}m$/min at the 2.5 sccm $BCl_3$ flow rate condition. A broad molecular peak was noticed in the range of $500{\sim}700\;mm$ wavelength during the $BCl_3$ plasma etching. SEM photos showed that 10 sccm $BCl_3$ plama produced more undercutting on GaAs sidewall than 5 sccm $BCl_3$ plasma.

Characteristics of Phosphorus Accumulation in Rotation System of Plastic Film House and Paddy Soils (시설재배지에서 윤답전환체계가 인산분포에 미치는 영향)

  • Lee, Yong-Bok;Lee, In-Bog;Hwang, Jun-Young;Lee, Kyung-Dong;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.47-58
    • /
    • 2002
  • Much of the plastic film house soils in the southern part of the Korean peninsula are managed using a upland-paddy rotation culture system (hereafter, RS) to prevent salt accumulation in soil. However, information on the effects of RS on soil properties and environmental conservation is limited. In order to determine the effects of RS on soil properties, 22 fields under RS and 20 fields under a non-rotation system (hereafter, NRS) in plastic film houses were selected in Chinju, in southern Korea, and the P distribution characteristics were investigated, including the chemical properties. The RS contributed to the removal of water-soluble salts in the surface layer and to the redistribution of organic matter evenly in the soil profile. In the AP horizon, available phosphorus levels were $1,611mg\;kg^{-1}$ in RS and $1,789mg\;kg^{-1}$ in NRS, which markedly exceeds the optimum range for plant cultivation. Total P was lower in RS (average $4,593mg\;kg^{-1}$) than in NRS (average $5,440mg\;kg^{-1}$) and this decrease was taken to be an effect of RS. Inorganic P was the predominant form of P in both systems, followed by organic P and residual P. A soil profile showed that total and inorganic P concentrations decreased with depth in both systems. However, organic P increased withdepth in RS, which was in contrast to that noted in NRS. The increase in organic P with depth in RS implied that organically rather than inorganically derived phosphate moved through the soil. The concentrations of water-soluble P, Ca-P and Al-P were higher in NRS than in RS soil profiles, but the Fe-P concentration was higher in RS than in NRS, which might be affected by the anaerobic conditions found in paddy soils. In both systems, the Al-P form of extractable P predominated in the surface layer, followed by Ca-P, Fe-P and water-soluble P. With increasing depth, the composition rate of Ca-P to extractable P decreased to less than 10% in the 60-70cm depth, as Fe-P dominated at this level. The content of water-soluble P, potentially the main source of eutrophication, was higher in NRS than in RS. These results indicated that the RS used in plastic film houses contributed to the removal of water-soluble salts but only slightly decreased the phosphate concentration.

Effects of Glue Sniffing on Weight Increase or Central Nervous System of Young Rat (반복된 본드 흡입이 백서의 정상발육에 의한 체중증가와 중추신경계에 미치는 영향)

  • Kim, Heon;Kim, Sun-Min;Cho, Soo-Hun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.2 s.42
    • /
    • pp.222-230
    • /
    • 1993
  • Industrial glues, known as 'Bonds' in Korea, contain many kinds of organic solvents, and glue sniffing of youths became one of the social problems in Korea. Mixed exposures to solvents by glue sniffing may induce chronic toxicities different from those by exposures to solvents of single component. To test effects of the glue sniffing on weight gain or central nervous system, two groups of 20 male Sprague-Dawley rats were exposed to air(control group) or vapors of the glues to narcotic status(exposed group), and weight check, tail flick test, hot plate test, rotarod treadmill test were done on the 14th,24th, 36th, 45th, 53rd, 86th, 102nd, 117th, 134th and 151st days after the first exposure. On the 188th day, their brains were excised and examined by a pathologist. Weight gain, controlled against time change, showed significant difference between the groups, but response times in tail flick test, hot plate tests, and rotarod treadmill test didn't. In pathological examination with blind method, no macroscopic or microscopic differences were found between the two groups. These results suggests that organic lesion in central nervous system may not ensue glue sniffing, but, before firm conclusion, more studies in various exposure conditions should be followed.

  • PDF