• Title/Summary/Keyword: g+6223G>A

Search Result 3, Processing Time 0.017 seconds

Effect of Myostatin (MSTN) g+6223G>A on Production and Carcass Traits in New Zealand Romney Sheep

  • Han, J.;Zhou, H.;Forrest, R.H.;Sedcole, J.R.;Frampton, C.M.;Hickford, J.G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.863-866
    • /
    • 2010
  • Myostatin, which is also known as growth and differentiation factor 8 (GDF8), has been reported to act as a negative regulator of skeletal muscle development. Variation in the myostatin gene (MSTN) has been associated with variation in muscularity in certain "meaty" sheep breeds. Polymerase Chain Reaction-Single Strand Conformational Polymorphism (PCR-SSCP) analysis was used to investigate allelic variation in the previously described g+6223G>A single-nucleotide polymorphism (SNP) in the 3' untranslated region (3' UTR) of MSTN. The sheep studied were 79 New Zealand (NZ) Romney lambs derived from a single sire heterozyous for g+6223G>A, which is in itself notable as this polymorphism has not been described previously in this breed. Allelic variation was observed to be associated with an abnormal gender ratio (p = 0.046) in the progeny. The presence of allele A was observed to have an effect (p<0.05) on birth weight, mean loin yield, proportion yield loin and total muscle yield. Allelic variation did not significantly affect mean shoulder yield, leg yield, proportion yield shoulder and proportion yield leg. This preliminary result suggests that while the A allele at MSTN g+6223 appears to improve some valuable traits in NZ Romney sheep, further research is required to understand if and how it may affect other traits.

Tumor-Suppression Mechanisms of Protein Tyrosine Phosphatase O and Clinical Applications

  • Kang, Man-Man;Shan, Shun-Lin;Wen, Xu-Yang;Shan, Hu-Sheng;Wang, Zheng-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6215-6223
    • /
    • 2015
  • Tyrosine phosphorylation plays an important role in regulating human physiological and pathological processes. Functional stabilization of tyrosine phosphorylation largely contributes to the balanced, coordinated regulation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Research has revealed PTPs play an important suppressive role in carcinogenesis and progression by reversing oncoprotein functions. Receptor-type protein tyrosine phosphatase O (PTPRO) as one member of the PTPs family has also been identified to have some roles in tumor development. Some reports have shown PTPRO over-expression in tumors can not only inhibit the frequency of tumor cell division and induce tumor cell death, but also suppress migration. However, the tumor-suppression mechanisms are very complex and understanding is incomplete, which in some degree blocks the further development of PTPRO. Hence, in order to resolve this problem, we here have summarized research findings to draw meaningful conclusions. We found tumor-suppression mechanisms of PTPRO to be diverse, such as controlling G0/G1 of the tumor cell proliferation cycle, inhibiting substrate phosphorylation, down-regulating transcription activators and other activities. In clinical anticancer efforts, expression level of PTPRO in tumors can not only serve as a biomarker to monitor the prognosis of patients, but act as an epigenetic biomarker for noninvasive diagnosis. In addition, the re-activation of PTPRO in tumor tissues, not only can induce tumor volume reduction, but also enhance the susceptibility to chemotherapy drugs. So, we can propose that these research findings of PTPRO will not only support new study ideas and directions for other tumor-suppressors, importantly, but also supply a theoretical basis for researching new molecular targeting agents in the future.

Association of SNP Haplotypes at the Myostatin Gene with Muscular Hypertrophy in Sheep

  • Gan, S.Q.;Du, Z.;Liu, S.R.;Yang, Y.L.;Shen, M.;Wang, X.H.;Yin, J.L.;Hu, X.X.;Fei, J.;Fan, J.J.;Wang, J.H.;He, Q.H.;Zhang, Y.S.;Li, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.928-935
    • /
    • 2008
  • The myostatin gene of seven important meat (Beltex (Australia), Beltex$\times$Huyang (F1), Meat and Multi-Prolific Chinese Merino Fine Wool, Meat Chinese Merino Fine Wool and Dorper (South Africa)) and non-meat (Huyang and Kazak) sheep breeds was analyzed to study the genetic basis of muscular hypertrophy (double muscling) phenotype in sheep. SNPs, four in regulatory regions and several in the introns in the myostatin gene, were identified, and the former four SNPs were used for further studies. Twelve haplotypes were predicted by PHASE program, of which four main haplotypes (1, 3, 7, 9) were present in 90% of the 364 sheep in the study. Haplotypes 1-4 were mainly present in meat breeds while haplotypes 7 and 9 dominated the non-meat breeds. The association between haplotypes and average daily gain (ADG) was analyzed among 116 sheep with production data, Haplo2 (CGAA) and Haplo8 (TGAA) were identified to have significant (p<0.05) effect on ADG by the model (JMP5.1 software) taking into account the effects of breed, family background, haplotype, birth weight and sex. ADG of these haplotype groups also correlated well (r = 0.82) with hypertrophic phenotype scores. In conclusion, the mutations -956 (T$\rightarrow$C), -41 (C$\rightarrow$A) and 6223 (G$\rightarrow$A) involved in Haplo2 and 8 may be associated with the double-muscling trait by influencing myostatin function and be suitable markers in selecting meat sheep.