• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.031 seconds

Genetically Optimized Design of Fuzzy Neural Networks for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위한 퍼지뉴럴네트워크의 유전자적 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1891-1892
    • /
    • 2008
  • 본 논문에서는 부분방전 패턴인식을 위한 퍼지뉴럴네크워크(Fuzzy-Nueral Network를 설계한다. 퍼지뉴럴네트워크의 구조에서 규칙의 전반부는 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 유전자 알고리즘을 이용하여 각 입력에 대한 전반부 멤버쉽함수의 정점과 학습률 및 모멤텀 계수를 최적으로 동조한다. 제안된 네트워크는 부분방전 패턴인식을 위해 다중 출력을 가지며, 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 256개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류하며, 패턴인식률로서 결과를 분석한다.

  • PDF

Optimized Identification of Genetic Algorithms based FPNN and Its Application to Nonlinear Data (진화 알고리즘 기반 FPNN의 최적 동정 및 비선형 데이터로의 응용)

  • Lee In-Tae;Lee Dong-Yoon;Kim Hyun-Ki;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.305-308
    • /
    • 2005
  • 본 논문은 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크(Genetic Algorithm-based Fuzzy Polynomial Neural Networks ; GAs-based FPNN)를 이용하여 비선형 데이터의 최적화 추론 알고리즘을 제안한다. FPNN의 각 노드는 GMDH와 퍼지규칙을 기초로 만들었다. FPNN의 각 노드는 퍼지 다항식 뉴론(Fuzzy Polynomial Neuron : FPN)이라고 표현하다. 제안된 모델은 구조 선택에 있어서 유전자 알고리즘(Genetic Algorithms : GAs)을 이용하였다. 유전자 알고리즘을 사용하여 입력의 차수와 입력의 개수 그리고 후반부 추론의 형태를 최적 선택하였다. 비선형 데이터에 대한 모델 설계를 위해 최적화 알고리즘인 유전자 알고리즘 기반 FPNN 모델 설계가 유용하고 효과적임을 보인다.

  • PDF

Design of Fuzzy Set-based Fuzzy Neural Networks for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위한 퍼지 집합 기반 퍼지뉴럴네트워크 설계)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.453-454
    • /
    • 2007
  • 전력설비에 대한 부분방전 패턴인식은 결함의 차이에 따라 다양한 패턴의 차이를 보이고 있으며, 신경회로망을 비롯한 다양한 패턴인식 기법들이 적용되고 있다. 본 논문에서는 이의 일환으로 퍼지 집합 기반 퍼지뉴럴네트워크를 설계하여 초고압 XLPE 케이블 절연접속함의 모의 결합에 대해 부분방전 신호를 패턴인식하고자 한다. 부분방전 신호는 보이드 방전, 코로나 방전, 노이즈의 3개 클래스로 분류하게 되며, PRPDA 방법을 통해 556개의 입력 벡터와 3개의 출력 벡터를 가지며 총 120개의 패턴수를 가진다.

  • PDF

Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.405-406
    • /
    • 2007
  • 본 논문에서는 FCM 기반 퍼지 뉴럴네트워크 구조를 제안하고 진화 알고리즘을 이용한 FCM 기반 퍼지 뉴럴네트워크의 구조와 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM 기반 뉴럴 네트워크에서 멤버쉽함수는 가우시안, 삼각형 타입등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 후반부는 상수형, 선형, 2차식 등의 다양한 다항식 구조로 표현될 수 있으며 다항식의 계수는 LSE를 이용하여 결정한다. FCM 기반 퍼지 뉴럴 네트워크는 퍼지규칙의 수, 입력변수의 선택, 후반부 다항식의 차수, FCM의 퍼지화 계수의 결정은 성능에 많은 차이가 있으며 이러한 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 유전자 알고리즘을 이용하여 FCM 기반 퍼지뉴럴네트워크의 구조에 관련된 입력변수의 수, 퍼지규칙의 수 그리고 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화 한다. 제안된 방법은 비선형 시스템의 모델링에 적용하여 성능을 분석하였다.

  • PDF

Task-Based Ontology of Problem Solving Adapters for Developing Intelligent Systems

  • Ko, Jesuk;Kitjongthawonkul, Somkiat
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.353-360
    • /
    • 2004
  • In this paper we describe Task-Based Problem Solving Adapters (TPSAs) for modeling a humam solution (through activity-centered analysis) to a software solution (in form of computer-based artifact). TPSAs are derived from the problem solving pattern or consistent problem solving structures/strategies employed by practitioners while designing solutions to complex problems. The adapters developed by us lead toward human-centeredness in their design and underpinning that help us to address the pragmatic task constraints through a range of technologies like neural networks, fuzzy logic, and genetic algorithms. We also outline an example of applying the TPSAs to develop a working system for assisting sales engineers of an electrical manufacturing firm in preparing indent and monitoring the status of orders in the company.

APPLICATIONS OF NEURO-FUZZY TECHNIQUES TO COLOR IMAGE PROCESSINGS

  • Kurosawa, Masa-Akl;Gotoh, Kel-Lchl;Takagi, Tshiyukl;Nakanishi, Shohachiro
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.960-963
    • /
    • 1993
  • We focus our attention on grading of table meat in accordance with the standard of Japan Meat Grading Association, and construct a beef grading system by image processing. For image processing of beef grading, it needs some techniques such as a shading correction, separation of color image data, and classification of color image data into some grades, for the system construction. However, there are various kinds of weak points in usually used methods for these techniques. Then the authors propose and introduce new approaches using Neural networks and fuzzy inference for the techniques above mentioned, which is very convenient and ensure the high precision.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

Recognition of Emotion Based on Simple Color Using Phrsiological Fuzzy Neural Networks (생리학적 퍼지 신경망을 이용한 단일 색상 기반 감성 인식)

  • 주이환;김배성;강동훈;성창민;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.536-540
    • /
    • 2003
  • 최근에 개인의 경험을 통해 얻어지는 외부의 물리적 자극에 대한 복합적인 감성을 측성 및 분석하여 공학적으로 처리함으로서 인간이 보다 편리하고 안락한 생활을 영위하도록 하는 연구가 활발히 진행되고 있다. 본 논문에서는 색채 심리를 바탕으로 한 감성을 인식할 수 있는 생리학적 퍼지 신경망은 제안하였다. 본 논문에서 제안한 생리학적 퍼지 뉴런 구조를 기반으로 하여 입력층, 퍼지 귀속 시넵스(Fuzzy Membership Synapse) 및 출력층으로 구성되며 지도 학습(supervised learning)으로 동작된다. 제안된 생리학적 퍼지 신경망을 단일 색상 정보에 따른 감성 인식에 적용한 결과, 단일 색상 정보에 따른 감성 인식에 있어서 효율적임을 확인 할 수 있었다.

  • PDF

Future Trend Impact Analysis Based on Adaptive Neuro-Fuzzy Inference System (ANFIS 접근방식에 의한 미래 트랜드 충격 분석)

  • Kim, Yong-Gil;Moon, Kyung-Il;Choi, Se-Ill
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.499-505
    • /
    • 2015
  • Trend Impact Analysis(: TIA) is an advanced forecasting tool used in futures studies for identifying, understanding and analyzing the consequences of unprecedented events on future trends. An adaptive neuro-fuzzy inference system is a kind of artificial neural network that integrates both neural networks and fuzzy logic principles, It is considered to be a universal estimator. In this paper, we propose an advanced mechanism to generate more justifiable estimates to the probability of occurrence of an unprecedented event as a function of time with different degrees of severity using Adaptive Neuro-Fuzzy Inference System(: ANFIS). The key idea of the paper is to enhance the generic process of reasoning with fuzzy logic and neural network by adding the additional step of attributes simulation, as unprecedented events do not occur all of a sudden but rather their occurrence is affected by change in the values of a set of attributes. An ANFIS approach is used to identify the occurrence and severity of an event, depending on the values of its trigger attributes. The trigger attributes can be calculated by a stochastic dynamic model; then different scenarios are generated using Monte-Carlo simulation. To compare the proposed method, a simple simulation is provided concerning the impact of river basin drought on the annual flow of water into a lake.

Advanced performance evaluation system for existing concrete bridges

  • Miyamoto, Ayaho;Emoto, Hisao;Asano, Hiroyoshi
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.727-743
    • /
    • 2014
  • The management of existing concrete bridges has become a major social concern in many developed countries due to the large number of bridges exhibiting signs of significant deterioration. This problem has increased the demand for effective maintenance and renewal planning. In order to implement an appropriate management procedure for a structure, a wide array of corrective strategies must be evaluated with respect to not only the condition state of each defect but also safety, economy and sustainability. This paper describes a new performance evaluation system for existing concrete bridges. The system evaluates performance based on load carrying capability and durability from the results of a visual inspection and specification data, and describes the necessity of maintenance. It categorizes all girders and slabs as either unsafe, severe deterioration, moderate deterioration, mild deterioration, or safe. The technique employs an expert system with an appropriate knowledge base in the evaluation. A characteristic feature of the system is the use of neural networks to evaluate the performance and facilitate refinement of the knowledge base. The neural network proposed in the present study has the capability to prevent an inference process and knowledge base from becoming a black box. It is very important that the system is capable of detailing how the performance is calculated since the road network represents a huge investment. The effectiveness of the neural network and machine learning method is verified by comparing diagnostic results by bridge experts.