• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.028 seconds

Fuzzy Supervised Learning Algorithm by using Self-generation (Self-generation을 이용한 퍼지 지도 학습 알고리즘)

  • 김광백
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1312-1320
    • /
    • 2003
  • In this paper, we consider a multilayer neural network, with a single hidden layer. Error backpropagation learning method used widely in multilayer neural networks has a possibility of local minima due to the inadequate weights and the insufficient number of hidden nodes. So we propose a fuzzy supervised learning algorithm by using self-generation that self-generates hidden nodes by the compound fuzzy single layer perceptron and modified ART1. From the input layer to hidden layer, a modified ART1 is used to produce nodes. And winner take-all method is adopted to the connection weight adaptation, so that a stored pattern for some pattern gets updated. The proposed method has applied to the student identification card images. In simulation results, the proposed method reduces a possibility of local minima and improves learning speed and paralysis than the conventional error backpropagation learning algorithm.

  • PDF

Extracting Input Features and Fuzzy Rules for forecasting KOSPI Stock Index Based on NEWFM (KOSPI 예측을 위한 NEWFM 기반의 특징입력 및 퍼지규칙 추출)

  • Lee, Sang-Hong;Lim, Joon-S.
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.129-135
    • /
    • 2008
  • This paper presents a methodology to forecast KOSPI index by extracting fuzzy rules based on the neural network with weighted fuzzy membership functions (NEWFM) and the minimized number of input features using the distributed non-overlap area measurement method. NEWFM classifies upward and downward cases of KOSPI using the recent 32 days of CPPn,m (Current Price Position of day n for n-1 to n-m days) of KOSPI. The five most important input features among CPPn,m and 38 wavelet transformed coefficients produced by the recent 32 days of CPPn,m are selected by the non-overlap area distribution measurement method. For the data sets, from 1991 to 1998, the proposed method shows that the average of forecast rate is 67.62%.

  • PDF

Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks based on Information Granulation and Evolutionary Algorithm

  • Park Ho-Sung;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.297-300
    • /
    • 2005
  • In this study, we proposed genetically optimized self-organizing fuzzy polynomial neural network based on information granulation and evolutionary algorithm (gdSOFPNN), develop a comprehensive design methodology involving mechanisms of genetic optimization. The proposed gdSOFPNN gives rise to a structural Iy and parametrically optimized network through an optimal parameters design available within FPN (viz. the number of input variables, the order of the polynomial, input variables, the number of membership functions, and the apexes of membership function). Here, with the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The performance of the proposed gdSOFPNN is quantified through experimentation that exploits standard data already used in fuzzy modeling.

  • PDF

ATM Connection Admission Control Using Traffic Parameters Compression (트래픽 파라메타 압축을 이용한 ATM 연결수락제어)

  • Lee, Jin-Lee
    • The KIPS Transactions:PartC
    • /
    • v.8C no.3
    • /
    • pp.311-318
    • /
    • 2001
  • 본 논문에서는 연결수락 제어시 사용자가 전송하는 트래픽 파라메타(샐 개수의 분산값과 평균값)를 압축하여 망에 신고하는 방법을 제안하고, 압축방법에 의한 연결수락제어의 성능을 분석 비교한다. 트래픽 파라메타 압축방법은 K-means, CL(Competitive Learning), Fuzzy ISODATA,FNC(Fuzzy Neural Clustering)를 사용한다. 제안한 트래픽 파라메타의 압축에 의한 연결수락제어는 퍼지 매핑함수(Fuzzy Mapping Funciton)fp 의해 신고한 트래픽 패턴을 추정하고, 전방향 구조의 신경망을 사용하여 연결의 수락/거절을 결정한다. ON-OFF 트래픽 모델 환경에서 컴퓨터 실험을 통하여 여러 가지 압축방법들을 사용한 연결수락제어의 성능을 Fuzziness 값에 따라 비교하였고, 그 결과 FNC 방법이 우수함을 알 수 있었다. EH한 연결수락제어의 성능을 높히기 위해서 관측 프레임의 셀 분산값이 크면 Fuzziness 값을 작게 선정하고, 작으면 상대적으로 크게 선정해야 함을 알 수 있었다.

  • PDF

Neurofuzzy System for an Intial Ship Design

  • Kim, Soo-Young;Kim, Hyun-Cheol;Lee, Kyung-Sun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.585-590
    • /
    • 1998
  • The purpose of this paper is to develop a neurofuzzy modeling & inference system which can determine principle dimensions and hull factors in an initial ship design. Neurofuzzy modeling & inference for a hull form design (NeFHull) applies the given input-output data to the fuzzy theory. NeFHull also deals the fuzzificated values with neural networks. NeFHull redefines normalized input-output data as membership functions and executes the fuzzficated information with backporpagation-neural -networks. A hybrid learning algorithms utilized in the training of neural networks and examining the usefulness of suggested method through mathematical and mechanical examples.

  • PDF

A Study on Pattern Recognition Using Polynomial-based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 패턴인식에 대한 연구)

  • Ji, Kwang-Hee;Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.387-389
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경 회로망을 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. 제안된 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층의 연결가중치는 1로서 입력층의 입력벡터는 그대로 은닉층으로 전달되고 은닉층은 FCM(Fuzzy C-means Clustering)방법을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습되어진다. 네트워크의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의한 퍼지추론의 결과로 얻어진다. 제안된 RBF 신경회로망은 여러 종류의 machine learning 데이터에 적용하여 패턴분류기로서의 성능을 평가받는다.

  • PDF

Design of Incremental FCM-based RBF Neural Networks Pattern Classifier for Processing Big Data (빅 데이터 처리를 위한 증분형 FCM 기반 RBF Neural Networks 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Roh, Seok-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1343-1344
    • /
    • 2015
  • 본 연구에서는 증분형 FCM(Incremental Fuzzy C-Means: Incremental FCM) 클러스터링 알고리즘을 기반으로 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks: RBFNN) 패턴 분류기를 설계한다. 방사형 기저함수 신경회로망은 조건부에서 가우시안 함수 또는 FCM을 사용하여 적합도를 구하였지만, 제안된 분류기에서는 빅 데이터간의 적합도를 구하기 위해 증분형 FCM을 사용한다. 또한, 빅 데이터를 학습하기 위해 결론부에서 재귀최소자승법(Recursive Least Square Estimation: RLSE)을 사용하여 다항식 계수를 추정한다. 마지막으로 추론부에서는 증분형 FCM에서 구한 적합도와 재귀최소자승법으로 구한 다항식을 이용하여 최종 출력을 구한다.

  • PDF

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Design of RBF Neural Network Controller Based on Fuzzy Control Rules (퍼지 제어규칙을 기반으로한 RBF 신경회로망 제어기 설계)

  • Choi, Jong-Soo;Kwon, Oh-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.394-396
    • /
    • 1997
  • This paper describes RBF network controller based on fuzzy control rules for intelligent control of nonlinear systems. The proposed scheme is derived from the functional equivalence between RBF networks and fuzzy inference systems. The design procedure of the proposed scheme is realized by first transforming the fuzzy control rules into the parameters of RBF networks. The optimized RBF network controller is then performed through the gradient descent learning mechanism to an error function. The proposed method is rigorously tested using a nonlinear and unstable nonlinear system. Simulation is performed to demonstrate the feasibility and effectiveness of the proposed scheme.

  • PDF

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF