• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.054 seconds

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

Efficiency Optimization Controller Development of IPMSM Drive by NN (NN에 의한 IPMSM 드라이브의 효율최적화 제어기 개발)

  • Choi, Jung-Sik;Park, Ki-Tae;Ko, Jae-Sub;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.94-96
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for IPMSM which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy teaming control-fuzzy neural networks(AFLC-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the AFLC-FNN controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Design of Feed-Forward Fuzzy Set-based Neural Networks Using Symbolic Encoding and Information Granulation (기호코딩 및 정보입자를 이용한 전방향 퍼지 집합 기반 뉴럴네트워크의 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2089-2090
    • /
    • 2006
  • 본 논문은 기호 코딩 및 정보입자를 이용한 유전자 알고리즘의 전방향 퍼지 집합 기반 뉴럴네트워크 (Information Granules and Symbolic Encoding-based Fuzzy Set Polynomial Neural Networks ; IG and SE based FSPNN)의 모델 설계를 제안한다. 기존 퍼지 집합기반 다항식 뉴럴네트워크(FSPNN)의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델은 각 입력에 대해 MFs의 개수 만큼 규칙을 생성하는 Fuzzy 집합기반 다항식 뉴럴네트워크(FSPNN)를 그대로 사용한다. 그리고 IG based gFSPNN의 평가을 위해 실험적 예제를 통하여 제안된 모델의 성능 및 근사화 능력의 우수함을 보인다.

  • PDF

The Design and Implementation of An Intelligent Neuro-Fuzzy System(INFS) (지능적인 뉴로-퍼지 시스템의 설계 및 구현)

  • 조영임;황종선;손진곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.149-161
    • /
    • 1994
  • The Max-Min CRI method , a traditional inference method , has three problems: subjective formulation of membership functions, error-prone weighting strategy, and inefficient compositional rule of inference. Because of these problems, there is an insurmountable error region between desired output and inferred output. To overcome these problems, we propose an Intelligent Neuro-Fuzzy System (INFS) based on fuzzy thoery and self-organizing functions of neural networks. INFS makes use of neural networks(Error Back Propagation) to solve the first problem, and NCRI(New Max-Min CRI) method for the second. With a proposed similarity measure, NCRI method is an improved method compared to the traditional Max-Min CRI method. For the last problem, we propose a new defuzzification method which combines only the appropriate rules produced by the rule selection level. Applying INFS to a D.C. series motor, we can conclude that the error region is reduced and NCRI method performs better than Max-Min CRI method.

  • PDF

A Study on Optimal Identification of Fuzzy Polynomial Neural Networks Model Using Genetic Algorithms (유전자 알고리즘을 이용한 FPNN 모델의 최적 동정에 관한 연구)

  • 이인태;박호성;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.429-432
    • /
    • 2004
  • 본 논문은 기존의 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks ; FPNN) 모델을 이용하여 비선형성 데이터에 대한 추론을 제안한다. 복잡한 비선형 시스템의 모델동정을 위하여 생성된 GMDH 방법에 기초한 FPNN의 각 노드는 퍼지 규칙을 기반으로 구축되었으며, 층이 진행되는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. FPNN 각각의 활성노드를 퍼지다항식 뉴론(Fuzzy Polynomial Neuron ; FPN)이라고 표현한다. FPNN의 후반부 구조는 입출력 변수 사이 의 간략과 회귀다항식 (1차, 2차, 변형된 2차식) 함수에 의해 구현된다. 규칙의 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 또한 유전자 알고리즘을 사용하여 각노드의 부분표현식을 구성하는 입력변수의 수, 입력변수와 차수의 선택 동조를 통하여 최적의 Genetic Algorithms(GAs)을 이용한 FPNN모델을 설계하는 것이 유용하고 효과적임을 보인다.

  • PDF

Prarmeter Tuning of Fuzzy Cotroller using Neural Networks System Identifier (신경회로망 시스템 식별기를 이용한 퍼지제어기의 변수동조)

  • 이우영;최흥문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.40-50
    • /
    • 1996
  • By using the neural networks(NN) as system identifier, the on-line self tuning method for fuzzy controller(FC) is proposed. In theis method, the learning of NN is carried out during control operation of FC and the cinsequent parameters of FC is tuned on-line automatically by means of system output errors backpropagated through NN. The Sugeno fuzzy model with constants as consequent parameters is selected for simplifying computation. In procedures of parameter tuning, the gradient descent method is used and the gradient vectors for adjusting the weight of NN are transferred as controller output errors. To evaluate the performance, the proposed method is applied to the inverted pendulum system.

  • PDF

Fuzzy-Neural Networks with Parallel Structure and Its Application to Nonlinear Systems (병렬구조 FNN과 비선형 시스템으로의 응용)

  • Park, Ho-Sung;Yoon, Ki-Chan;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3004-3006
    • /
    • 2000
  • In this paper, we propose an optimal design method of Fuzzy-Neural Networks model with parallel structure for complex and nonlinear systems. The proposed model is consists of a multiple number of FNN connected in parallel. The proposed FNNs with parallel structure is based on Yamakawa's FNN and it uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. We use a HCM clustering and GAs to identify the structure and the parameters of the proposed model. Also, a performance index with a weighting factor is presented to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model. we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Development of Artificial Intelligent Controller for Efficiency Optimization of IPMSM Drive (IPMSM 드라이브의 효율최적화를 위한 인공지능 제어기 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Park, Byung-Sang;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1007-1008
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for IPMSM which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy learning control-fuzzy neural networks(AFLC-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the AFLC-FNN controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Seo, Sang-Wook;Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the enviromuent. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

Optimal Design of Fuzzy Set-based Polynomial Neural Networks Using Symbolic Gene Type and Information Granulation (유전 알고리즘의 기호코딩과 정보입자화를 이용한 퍼지집합 기반 다항식 뉴럴네트워크의 최적 설계)

  • Lee, In-Tae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.217-219
    • /
    • 2006
  • 본 연구는 정보입자와 유전알고리즘의 기호코딩을 통해 퍼지집합 기반 다항식 뉴럴네트워크(IG based gFSPNN)의 최적 설계 제안한다. 기존의 Furry Srt-based Polynomial Neural Networks의 최적설계를 위해 유전자 알고리즘의 이진코딩을 사용하였다. 이지코딩은 스티링 길이 때문에 연산시간이 급격히 증가되는 현상과 해밍절벽(Hamming Cliff)에 따른 급격한 비트변환이 힘들다는 단점이 내제 하였다. 이에 본 논문에서는 스티링 길이와 해밍절벽에 따른 문제를 해결 하기위해 기호코딩을 사용하였다._데이터들의 특성을 모델에 반영하기 위해 Hard C-Means(HCM)을 결합한 Information Granulation(IG)을 사용하여 최적모델 구축 속도를 빠르게 하였다. 실험적 예제를 통하여 제안된 모델의 성능을 평가한다.

  • PDF