• 제목/요약/키워드: fuzzy-PID

검색결과 468건 처리시간 0.03초

직선형 도립 진자의 퍼지-PID 제어에 관한 연구 (A study on Fuzzy-PID Control of a Straight Line Type Inverted Pendulum)

  • Kim, J.M.;Lee, S.G.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.57-64
    • /
    • 1994
  • This paper proposes a fuzzy tuning PID controller for straight line type inverted pendulum. The conventional PID controller which is used widely in industrial field has fatal drawback on determining control gains for practical system. The proposed controller tunes the gains automatically based on fuzzy urle derived from the experience of expert operator. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method in terms of rising time, overshoot, and overall errors.

  • PDF

보상형 퍼지알고리즘을 이용한 전력발전기의 PID 제어 (PID Control with Fuzzy Compensation for Electric Power Generation Unit)

  • Hak Roh, Lee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.217-220
    • /
    • 2004
  • Controller that is designed in this paper is form that apply PID controller about Fuzzy algorithm. Fuzzy Controller that using this paper is can speak that compensation style fuzzy controller as form to solidify action of PID controller for plant. This is not form that autotuning the each PID coefficient. We Apply and examined the response character to AGC(Automatic Generation Control) system using designed controller.

  • PDF

고정 파라미터를 갖는 단순화된 퍼지 PID 제어기의 제안과 안정도 분석 (Stability Analysis and Proposal of the Simplified Form of a Fuzzy PID Controller with Fixed Parameters)

  • 이병결;김인환;김종화
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.807-815
    • /
    • 2004
  • 본 논문은 고정 파라미터를 갖는 퍼지 PID제어기의 설계방법을 기술하고 컴퓨터 연산 시간을 줄일 수 있는 단순화된 퍼지 PID제어기를 제안하며 제안한 제어기의 안정도를 분석한다. 안정도 분석을 위해 사용한 소이득 정리로부터 전체 피드백 시스템의 BIBO 안정도의 실제적인 충분조건을 유도하고, 유도한 안정 조건으로부터 안정한 선형 PID제어기의 파라미터로부터 퍼지 PID제어기의 파라미터를 결정하는 방법을 고찰한다. 마지막으로 선형 시스템과 비선형 시스템에 대한 컴퓨터 시뮬레이션을 실시하고 비선형 퍼지 PID제어기의 시뮬레이션 결과를 선형 PID제어기의 시뮬레이션 결과와 비교하여 성능을 확인한다.

선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어 (T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship)

  • 이유수;황순규;안종갑
    • 수산해양기술연구
    • /
    • 제59권1호
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

PID auto-tuning controller design via fuzzy logic

  • He, Wei;Yu, Tian;Zhai, Yujia
    • 한국융합학회논문지
    • /
    • 제4권4호
    • /
    • pp.31-40
    • /
    • 2013
  • PID auto-tuning controller was designed via fuzzy logic. Typical values such as error and error derivative feedbackwere changed as heuristic expressions, and they determine PID gain through fuzzy logic and defuzzification process. Fuzzy procedure and PID controller design were considered separately, and they are combined and analyzed. Obtained auto-tuning PID controller by Fuzzy Logic showed the ability for less than 3rd order plant control.

Design of Honing Coolant Temperature Control System Based on Fuzzy Self-tuning PID

  • Ye, Lian-zheng;Lee, Chan-Su;Park, Seung-Yub
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.156-160
    • /
    • 2018
  • In the paper, a kind of self-tuning PID control system is designed to keep the honing coolant temperature constant in the process of automobile engine production. The conventional PID control method and the Fuzzy PID control method both are used to design and make the simulation experiment in Matlab. According to the simulation result, the performance of Fuzzy PID control method is obviously better. The Fuzzy PID control system can react faster to get the target temperature and resume normal when external conditions exchanged.

퍼지 논리를 이용한 전문가 PID 자기 동조 제어기에 관한 연구 (A Study on the Expert PID Autotuner Using Fuzzy Logic)

  • 김영상;최한호;정명진;안태영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.366-368
    • /
    • 1993
  • In this paper, we present an approach to automatically tune and adapt PID parameters by using Fuzzy Logic. PID controllers are well-known and found in many industries. Although the potentials of PID controllers, PID controllers are often poorly tuned and their capabilities are not fully used. We can think that the tuning of PID parameters is based on heuristics and some rule of thumbs. This is the reason we come to use Fuzzy Logic. We show that by imbedding heuristics and some rule of thumbs in PID controllers, reperesented by Fuzzy Logic. we can make PID controllers be robust to uncertainties such as load variations and adapt parameter changes.

  • PDF

병렬 퍼지-PID 제어기를 이용한 자기부상 제어 (Magnetic Levitation Control Using The Parallel Fuzzy Controller)

  • 김명건;김종문;최영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.352-354
    • /
    • 2004
  • In this paper, a parallel fuzzy controller for one degree of freedom magnetic levitation is designed and its performance is compared with the performance of a PID controller. Input, output scaling factor of fuzzy controller and gain of PID controller were tuned using the GA algorithm. The designed controllers are validated by numerical simulations. So it's shown that parallel fuzzy controller can give the better performance for the plant than PID controller.

  • PDF

퍼지게인 스케쥴링 PID 제어이론을 이용한 동적 위치 유지 제어기법에 관한 연구 (A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory)

  • 전마로;김희수;김재학;김수정;송순석;김상현
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.102-112
    • /
    • 2017
  • Many studies on dynamic positioning control algorithms using fixed feedback gains have been carried out to improve station keeping performance of dynamically positioned vessels. However, the control algorithms have disadvantages in that it can not cope with changes in environmental disturbances and response characteristics of vessels motion in real time. In this paper, the Fuzzy Gain Scheduling - PID(FGS - PID) control algorithm that can tune PID gains in real time was proposed. The FGS - PID controller that consists of fuzzy system and a PID controller uses weighted values of PID gains from fuzzy system and fixed PID gains from Ziegler - Nichols method to tune final PID gains in real time. Firstly, FGS - PID controller, control allocation algorithm, FPSO and environmental disturbances were modeled using Matlab/Simulink to evaluate station keeping performance of the proposed control algorithm. In addition, simulations that keep positions and a heading angle of vessel with wind, wave, current disturbances were carried out. From simulation results, the FGS - PID controller was confirmed to have better performances of keeping positions and a heading angle and consuming power than those of the PID controller. As a consequence, the proposed FGS - PID controller in this paper was validated to have more effectiveness to keep position and heading angle than that of PID controller.

퍼지 로직 동조기를 이용한 PID 제어기의 이득 조정 (Tuning gains of a PID controller using fuzzy logic-based tuners)

  • 이명원;권순학;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.184-187
    • /
    • 1996
  • In this paper, an algorithm for tuning gains of a PID controller is proposed. The proposed algorithm is composed of two stages. The first is a stage for Lyapunov function-based initial stabilization of an overall system and rough tuning gains of the PID controller. The other is that for fine tuning gains of the PID controller. All tunings are performed by using the well-known fuzzy logic-based tuner. The computer simulations are performed to show the validity of the proposed algorithm and results are presented.

  • PDF