• Title/Summary/Keyword: fuzzy time series

Search Result 192, Processing Time 0.03 seconds

Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice (면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용)

  • Cho, Jae-Hoon;Kim, Dong-Hwa;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.402-410
    • /
    • 2004
  • In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

Unusual Motion Detection for Vision-Based Driver Assistance

  • Fu, Li-Hua;Wu, Wei-Dong;Zhang, Yu;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • For a vision-based driver assistance system, unusual motion detection is one of the important means of preventing accidents. In this paper, we propose a real-time unusual-motion-detection model, which contains two stages: salient region detection and unusual motion detection. In the salient-region-detection stage, we present an improved temporal attention model. In the unusual-motion-detection stage, three kinds of factors, the speed, the motion direction, and the distance, are extracted for detecting unusual motion. A series of experimental results demonstrates the proposed method and shows the feasibility of the proposed model.

Fuzzy Time Series Prediction with Data Preprocessing and Error Compensation Based on Correlation Analysis (상관해석을 기반으로 한 데이터의 전처리와 오차 보정을 갖는 퍼지 시계열 예측)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1773-1774
    • /
    • 2008
  • 유동적 비선형 특성을 보이는 혼돈 시계열에 대한 정확한 예측을 위해 예측 입력으로 차분 데이터를 사용하면 보다 나은 예측이 가능하다. 그러므로 본 논문에서는 상관 해석에 기반한 데이터의 전처리를 통해 적절한 최적 차분 간격 후보군을 선정하고 이들 각각에 대한 TS 퍼지 예측기로 다중 모델을 구성하여 성능 지수 평가에 의해 최적의 퍼지 예측기를 선택하여 예측을 수행하도록 하였으며, TS 퍼지 규칙 후건부에서 결정되는 예측 출력에 상관 해석에 기반한 오차 보정 메거니즘을 추가함으로써 예측 성능을 더욱 향상시킬 수 있도록 하였다.

  • PDF

Design and Application of Genetic-Fuzzy System based on Grammatical Encoding (문법 코딩에 기반한 유전적 퍼지 시스템의 설계 및 응용)

  • Gil, Jun-Min;Go, Myeong-Suk;Hwang, Jong-Seon
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.1
    • /
    • pp.31-45
    • /
    • 2001
  • 퍼지 시스템의 설계시, 퍼지 시스템의 성능 저하 없이 최적의 퍼지 규칙 선택과 퍼지 소속 함수의 단순한 정의는 매우 중요하다. 이러한 목적을 이루기 위해서, 본 논문에서는 입력 공간에 강한 영향을 보이는 퍼지 규칙만을 퍼지 규칙으로 선택함으로써 입력 공간의 증가에 유연하게 대처할 수 있는 퍼지 규칙 구조를 제안한다. 또한, 유전자 알고리즘의 진화 탐색을 통하여 퍼지 시스템의 최적화된 구조를 얻기 위해서 퍼지 시스템의 구조를 생성시키는 문법 규칙을 해개체로 코딩하는 문법 코딩을 이용한 유전적 퍼지 시스템을 제안한다. 문법 규칙은 퍼지 규칙의 복잡한 구조를 단순한 모듈 구조로 표현하므로 문법 규칙의 코딩은 유전자 알고리즘의 빠른 수렴과 효율적인 탐색을 보장한다. 아울러, 제안하는 방법을 많은 입력 공간을 갖는 아이리스 데이타(Iris data) 문제와 시간열 예측(time series prediction) 문제에 적용함으로써 제안하는 방법의 응용성을 보이고 성능을 분석한다. 실험 결과, 제안하는 방법이 직접 코딩을 사용한 다른 설계 방법보다 더 좋은 성능을 보여 주었다.

  • PDF

Prediction of Sun Spots Time Series using the Improved Parallel-Structure Fuzzy Systems (개선된 PSFS를 이용한 태양흑점 시계열 데이터의 예측)

  • Kim, Min-Soo;You, Chi-Hyoung;Lee, Hae-Soo;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2750-2752
    • /
    • 2003
  • 흑점은 태양 표면에 검은 구멍처럼 보이는 것으로 흑점이 나타나면 태양활동이 활발함을 의미한다. 이러한 태양활동은 플레어나 홍염 등의 형태로 표출되어 지구의 자기장을 변동시킴으로써 전력, 통신 시스템의 장애를 유발하게 된다. 따라서 이러한 흑점 데이터를 예측함으로써 사전에 대비할 수 있도록 할 필요가 있다. 흑점 시계열 데이터의 예측에 사용된 시스템은 병렬구조를 갖는 퍼지시스템(PSFS)으로 각 퍼지시스템의 규칙은 주어진 입출력 데이터를 클러스터링하여 생성하였다. 특히, 흑점 시계열 데이터와 같이 주기성향을 갖는 테이터의 경우에도 적용가능하도륵 유연한 구조를 갖는 개선된 PSFS를 제안하여 그 성능을 검증하였다.

  • PDF

Impact of Hull Condition and Propeller Surface Maintenance on Fuel Efficiency of Ocean-Going Vessels

  • Tien Anh Tran;Do Kyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.181-189
    • /
    • 2023
  • The fuel consumption of marine diesel engines holds paramount importance in contemporary maritime transportation and shapes energy efficiency strategies of ocean-going vessels. Nonetheless, a noticeable gap in knowledge prevails concerning the influence of ship hull conditions and propeller roughness on fuel consumption. This study bridges this gap by utilizing artificial intelligence techniques in Matlab, particularly convolutional neural networks (CNNs) to comprehensively investigate these factors. We propose a time-series prediction model that was built on numerical simulations and aimed at forecasting ship hull and propeller conditions. The model's accuracy was validated through a meticulous comparison of predictions with actual ship-hull and propeller conditions. Furthermore, we executed a comparative analysis juxtaposing predictive outcomes with navigational environmental factors encompassing wind speed, wave height, and ship loading conditions by the fuzzy clustering method. This research's significance lies in its pivotal role as a foundation for fostering a more intricate understanding of energy consumption within the realm of maritime transport.

A Study on the Control System of Maximum Demand Power Using Neural Network and Fuzzy Logic (신경망과 퍼지논리를 이용한 최대수요전력 제어시스템에 관한연구)

  • 조성원
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.420-425
    • /
    • 1999
  • The maximum demand controller is an electrical equipment installed at the consumer side of power system for monitoring the electrical energy consumed during every integrating period and preventing the target maximum demand (MD) being exceeded by disconnecting sheddable loads. By avoiding the peak loads and spreading the energy requirement the controller contributes to maximizing the utility factor of the generator systems. It results in not only saving the energy but also reducing the budget for constructing the natural base facilities by keeping thc number of generating plants ~ninimumT. he conventional MD controllers often bring about the large number of control actions during the every inteyating period and/or undesirable loaddisconnecting operations during the beginning stage of the integrating period. These make the users aviod the MD controllers. In this paper. fuzzy control technique is used to get around the disadvantages of the conventional MD control system. The proposed MD controller consists of the predictor module and the fuzzy MD control module. The proposed forecasting method uses the SOFM neural network model, differently from time series analysis, and thus it has inherent advantages of neural network such as parallel processing, generalization and robustness. The MD fuzzy controller determines the sensitivity of control action based on the time closed to the end of the integrating period and the urgency of the load interrupting action along the predicted demand reaching the target. The experimental results show that the proposed method has more accurate forecastinglcontrol performance than the previous methods.

  • PDF

Nitrate Exposure Assessment under Uncertainty (불확실 상황에서 질산 폭로 평가)

  • Lee, Yong-Woon;Bogardi, Istvan
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.105-121
    • /
    • 1995
  • Nitrate contamination problems from groundwater supplies have been documented throughout many countries in the world, including Korea. Nitrate salts can induce methemoglobinemia and possibly human gastric cancer. In farmed areas. intensive agricultural activities have caused a major increase in nitrate loading to groundwater. To determine whether decision makers must take farm-management actions to control the increase of groundwater nitrate concentration and to decide the timing of such actions, it is important to predict groundwater Nitrate levels that would result over time from various farm-management practices. However, the input values such as soil, fertilizer and crop data) used to examine the effects of various farm-management practices on groundwater nitrate level are usually uncertain due to a lack of available information. In this paper. the ease of a community with a nitrate water quality problem is illustrated to examine the effects of various farm-management practices and to show bow to perform, with uncertain information. a time-series analysis on groundwater nitrate levels that would result. from each farm-management practice.

  • PDF

Flood Forecasting and Warning Using Neuro-Fuzzy Inference Technique (Neuro-Fuzzy 추론기법을 이용한 홍수 예.경보)

  • Yi, Jae-Eung;Choi, Chang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.341-351
    • /
    • 2008
  • Since the damage from the torrential rain increases recently due to climate change and global warming, the significance of flood forecasting and warning becomes important in medium and small streams as well as large river. Through the preprocess and main processes for estimating runoff, diverse errors occur and are accumulated, so that the outcome contains the errors in the existing flood forecasting and warning method. And estimating the parameters needed for runoff models requires a lot of data and the processes contain various uncertainty. In order to overcome the difficulties of the existing flood forecasting and warning system and the uncertainty problem, ANFIS(Adaptive Neuro-Fuzzy Inference System) technique has been presented in this study. ANFIS, a data driven model using the fuzzy inference theory with neural network, can forecast stream level only by using the precipitation and stream level data in catchment without using a lot of physical data that are necessary in existing physical model. Time series data for precipitation and stream level are used as input, and stream levels for t+1, t+2, and t+3 are forecasted with this model. The applicability and the appropriateness of the model is examined by actual rainfall and stream level data from 2003 to 2005 in the Tancheon catchment area. The results of applying ANFIS to the Tancheon catchment area for the actual data show that the stream level can be simulated without large error.