• Title/Summary/Keyword: fuzzy time cognitive map

Search Result 4, Processing Time 0.016 seconds

Fault Diagnostic System Based on Fuzzy Time Cognitive Map

  • Lee, Kee-Sang;Kim, Sung-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. Authors have already proposed a diagnostic system based on FCM to utilized to identify the true origin of fault by on-line pattern diagnosis. In FCM based fault diagnosis, Temporal Associative Memories (TAM) recall of FCM is utilized to identify the true origin of fault by on-line pattern match where predicted pattern sequences obtained from TAM recall of fault FCM models are compared with actually observed ones. In engineering processes, the propagation delays are induced by the dynamics of processes and may vary with variables involved. However, disregarding such propagation delays in FCM-based fault diagnosis may lead to erroneous diagnostic results. To solve the problem, a concept of FTCM(Fuzzy Time Cognitive Map) is introduced into FCM-based fault diagnosis in this work. Expecially, translation method of FTCM makes it possible to diagnose the fault for some discrete time. Simulation studies through two-tank system is carried out to verify the effectiveness of the proposed diagnostic scheme.

  • PDF

Diagnosis of Process Failure using FCM (FCM을 이용한 프로세스 고장진단)

  • Lee, Kee-Sang;Park, Tae-Hong;Jeong, Won-Seok;Choi, Nak-Won
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.430-432
    • /
    • 1993
  • In this paper, an algorithm for the fault diagnosis using simple FCM(Fuzzy Cognitive Map) is proposed FCMs which store uncertain causal knowledges are fuzzy signed graphs with feedback. The algorithm allows searching the origin of fault and the ways of propagating the abnormality throughout the process simply and has following characteristics. First, it can distinguish the cause of soft failure which can degenerate the process as well as hard failure. Second, it is proper for the processes which have difficulties to establish the exact quantative model. Finally, it has short amputation time in comparison with the fault tree or the other AI methods. The applicability of the proposed algorithm for the fault diagonosis to a tank or pipeline system is demonstrated

  • PDF

Fault diagnosis using FCM and TAM recall process (FCM과 TAM recall 과정을 이용한 고장진단)

  • 이기상;박태홍;정원석;최낙원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.233-238
    • /
    • 1993
  • In this paper, two diagnosis algorithms using the simple fuzzy, cognitive map (FCM) that is an useful qualitative model are proposed. The first basic algorithm is considered as a simple transition of Shiozaki's signed directed graph approach to FCM framework. And the second one is an extended version of the basic algorithm. In the extension, three important concepts, modified temporal associative memory (TAM) recall, temporal pattern matching algorithm and hierarchical decomposition are adopted. As the resultant diagnosis scheme takes short computation time, it can be used for on-line fault diagnosis of large scale and complex processes that conventional diagnosis methods cannot be applied. The diagnosis system can be trained by the basic algorithm and generates FCM model for every experienced process fault. In on-line application, the self-generated fault model FCM generates predicted pattern sequences, which are compared with observed pattern sequences to declare the origin of fault. In practical case, observed pattern sequences depend on transport time. So if predicted pattern sequences are different from observed ones, the time weighted FCM with transport delay can be used to generate predicted ones. The fault diagnosis procedure can be completed during the actual propagation since pattern sequences of tvo different faults do not coincide in general.

  • PDF

Web Cogmulator : The Web Design Simulator Using Fuzzy Cognitive Map (Web Cogmulator : 퍼지 인식도를 이용한 웹 디자인 시뮬레이터에 관한 연구)

  • 이건창;정남호;조형래
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.357-364
    • /
    • 2000
  • 기존의 웹 디자인은 웹이라는 매체의 특성 상 디자인적인 요소가 매우 중요함에도 불구하고 디자인은 위한 구체적인 방법론이 미약하다. 특히, 많은 소비자들을 유인하고 구매를 촉발시켜야 하는 인터넷 쇼핑몰의 경우에는 더욱 더 그럼하에도 불구하고 이를 위한 전략적인 방법론이 부족하다. 즉, 기존 연구들은 제품의 다양성, 서비스, 촉진, 항해량, 편리성, 사용자 인터페이스 등이 중요하다고 하였지만 실제 인터넷 쇼핑몰을 디자인하는 입장에서는 활용하기가 상당히 애매하다. 그 이유는 이들 요인들은 서로 영향관계를 가지고 있어서 사용자 인터페이스가 복잡하면 항해량이 늘어나 편리성이 감소하고, 제품이 늘어나더라도 검색엔진을 사용하면 상대적으로 항해량이 감소하게 되어 편리성이 증가한다. 따라서, 이들 요인을 활용하여 인터넷 쇼핑몰을 구축하려면 요인간의 영향관계를 면밀히 파악하고 이 영향요인이 소비자의 구매행동에 어떠한 영향을 주는지가 충분히 검토되어야 한다.이에 본 연구에서는 퍼지인식도를 이용하여 인터넷 쇼핑몰 상에서 소비자의 구매행동에 영향을 주는 요인을 추출하고 이들 요인간의 인과관계를 도출하여 보다 구체적이고 전략적으로 인터넷 쇼핑몰을 디자인할 수 있는 방법으로 web-Cogmulator를 제시한다. Web-Cogmulator는 소비자의 쇼핑몰에 대한 암묵지식 형태의 구매행동을 형태지식화하여 지식베이스 형태로 가지고 있기 때문에 인터넷 쇼핑몰의 다양한 요인의 변화에 따른 소비자의 구매행동을 추론 시뮬레이션하는 것이 가능하다. 이에 본 연구에서는 기본적인 인터넷 쇼핑몰 시나리오를 바탕으로 추론 시뮬레이션을 실시하여 Web-Cogmulator의 유용성을 검증하였다.를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서의 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용가능하리라 여겨진다.선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computati

  • PDF