• 제목/요약/키워드: fuzzy set methodology

검색결과 85건 처리시간 0.024초

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

Evolutionary Design Methodology of Fuzzy Set-based Polynomial Neural Networks with the Information Granule

  • Roh Seok-Beom;Ahn Tae-Chon;Oh Sung-Kwun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.301-304
    • /
    • 2005
  • In this paper, we propose a new fuzzy set-based polynomial neuron (FSPN) involving the information granule, and new fuzzy-neural networks - Fuzzy Set based Polynomial Neural Networks (FSPNN). We have developed a design methodology (genetic optimization using Genetic Algorithms) to find the optimal structure for fuzzy-neural networks that expanded from Group Method of Data Handling (GMDH). It is the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables that are the parameters of FSPNN fixed by aid of genetic optimization that has search capability to find the optimal solution on the solution space. We have been interested in the architecture of fuzzy rules that mimic the real world, namely sub-model (node) composing the fuzzy-neural networks. We adopt fuzzy set-based fuzzy rules as substitute for fuzzy relation-based fuzzy rules and apply the concept of Information Granulation to the proposed fuzzy set-based rules.

  • PDF

퍼지 속성 집합을 이용한 데이터 분석 모델 (Data Analysis Model using the Fuzzy Property Set)

  • 이진호;이전영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.252-255
    • /
    • 1997
  • In this paper, we will propose the methodology of data analysis using the fuzzy property set model. In real world, the data can be represented with the object. $\theta$. and the property, $\pi$, and its has-property relation, P. Then, the conceptual space can be defined with the chosen properties. Each object has a unique location in the conceptual space. In Fuzzy mode, the fuzzy property, and fuzzy conceptual space can be redefined. To analyze data using the fuzzy property set model, the rough set need to be defined in the fuzzy conceptual space.

  • PDF

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

Evolutionary Optimized Fuzzy Set-based Polynomial Neural Networks Based on Classified Information Granules

  • Oh, Sung-Kwun;Roh, Seok-Beom;Ahn, Tae-Chon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2888-2890
    • /
    • 2005
  • In this paper, we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C- Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons

  • Oh Sung-Kwun;Roh Seok-Beom;Park Keon-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.327-332
    • /
    • 2005
  • We investigatea new fuzzy-neural networks-Hybrid Fuzzy set based polynomial Neural Networks (HFSPNN). These networks consist of genetically optimized multi-layer with two kinds of heterogeneous neurons thatare fuzzy set based polynomial neurons (FSPNs) and polynomial neurons (PNs). We have developed a comprehensive design methodology to determine the optimal structure of networks dynamically. The augmented genetically optimized HFSPNN (namely gHFSPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of gHFSPNN leads to the selection leads to the selection of preferred nodes (FSPNs or PNs) available within the HFSPNN. In the sequel, the structural optimization is realized via GAs, whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFSPNN is quantified through experimentation where we use a number of modeling benchmarks synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

복지국가의 변화 측정을 위한 새로운 시도 (Exploratory Measuring the Welfare State Change)

  • 김교성;김성욱
    • 한국사회복지학
    • /
    • 제62권1호
    • /
    • pp.5-30
    • /
    • 2010
  • 본 연구의 목적은 비교사회정책 연구의 핵심 주제인 '종속변수의 문제'를 해결하기 위해, 이론적으로 적절하고, 다차원적이며, 복지국가 변화의 정도와 방향을 동시에 고려할 수 있는 대안적 측정방법을 시도하는 데 있다. 이를 위해 12개 OECD 주요 회원국의 복지국가 변화과정을 2가지 차원과 4가지 범주(접근성, 관대성, 활성화, 돌봄의 국가책임)로 구분하고, Fuzzy set 접근방식을 통해 16가지 이념형을 구축하여 변화의 정도와 방향을 관찰하였다. 그 결과, 비록 정도에 차이는 있으나 각 복지국가는 나름의 독특한 변화과정을 보이며, 이러한 변화는 질적인 측면을 반영할 뿐 복지국가의 패러다임적 전환이나 체제전환으로 이어지지는 않은 것으로 나타났다. 또한 자본주의 복지국가들의 변화는 몇 가지 이념형으로 수렴되는 경향을 보이는 것으로 확인되었다.

  • PDF

An LMI-Based Fuzzy State Feedback Control with Multi-objectives

  • Hong, Sung-Kyung;Yoonsu Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.105-113
    • /
    • 2003
  • This paper proposes a systematic design methodology for the Takagi-Sugeno (TS) model based fuzzy state feedback control system with multi-objectives. In this investigation, the objectives are set to be guaranteed stability and pre-specified transient performance, and this scheme is applied to a nonlinear magnetic bearing system. More significantly, in the proposed methodology, the control design problems that consider both stability and desired transient performance are reduced to the standard LMI problems. Therefore, solving these LMI constraints directly (not trial and error) lead to a fuzzy state-feedback controller such that the resulting fuzzy control system meets the above two objectives. Simulation and experimentation results show that the Proposed LMI-based design methodology yields not only maximized stability boundary but also the desired transient responses.

Job Scheduling Problem Using Fuzzy Numbers and Fuzzy Delphi Method

  • Park, Seung-Hun;Chang, In-Seong
    • 대한산업공학회지
    • /
    • 제22권4호
    • /
    • pp.607-617
    • /
    • 1996
  • This paper shows that fuzzy set theory can be useful in modeling and solving job scheduling problems with uncertain processing times. The processing times are considered as fuzzy numbers(fuzzy intervals or time intervals) and the fuzzy Delphi method is used to estimate a reliable time interval of each processing time. Based on these time estimates, we then propose an efficient methodology for calculating the optimal sequence and the fuzzy makespan.

  • PDF