• 제목/요약/키워드: fuzzy parameters

검색결과 1,241건 처리시간 0.029초

퍼지 신경망 제어기의 구조 및 매개 변수 최적화 (The Structure and Parameter Optimization of the Fuzzy-Neuro Controller)

  • 장욱;권오국;주영훈;윤태성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.739-742
    • /
    • 1997
  • This paper proposes the structure and parameter optimization technique of fuzzy neural networks using genetic algorithm. Fuzzy neural network has advantages of both the fuzzy inference system and neural network. The determination of the optimal parameters and structure of the fuzzy neural networks, however, requires special efforts. To solve these problems, we propose a new learning method for optimization of fuzzy neural networks using genetic algorithm. It can optimize the structure and parameters of the entire fuzzy neural network globally. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Fuzzy Rule Base를 이용한 한국어 연속 음성인식 (A Korean Speech Recognition Using Fuzzy Rule Base)

  • 송정영
    • 공학논문집
    • /
    • 제2권1호
    • /
    • pp.13-21
    • /
    • 1997
  • 본 연구는 연속음성을 인식하기 위하여 특징 Parameter의 변동성을 Fuzzy 변수로 취하여 Membership 함수로 표현한 후, Fuzzy 추론으로 연속음성을 인식하는 연구이다. 특징 Parameter로는 Formant 주파수, Pitch, Log Energy, Zero Crossing Rate등을 사용한다. 연속음성의 Data로서는 한국어의 연속음성을 대상으로 하여 음성인식 system을 구현한다음, 인식실험을 통하여 본 연구의 유교성을 확인한다.

  • PDF

클러스터링 기법과 유전자 알고리즘에 의한 다중 퍼지 모델으 동정 (The Identification of Multi-Fuzzy Model by means of HCM and Genetic Algorithms)

  • 박병준;이수구;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3007-3009
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of clustering method and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model. HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

다중 퍼지 추론 모델에 의한 비선형 시스템의 최적 동정 (The optimal identification of nonlinear systems by means of Multi-Fuzzy Inference model)

  • 정회열;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2669-2671
    • /
    • 2001
  • In this paper, we propose design a Multi-Fuzzy Inference model structure. In order to determine structure of the proposed Multi-Fuzzy Inference model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

유전자 알고리즘을 이용한 이동 로봇 주행 파라미터의 최적화 (Optimization of parameters in mobile robot navigation using genetic algorithm)

  • 김경훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1161-1164
    • /
    • 1996
  • In this paper, a parameter optimization technique for a mobile robot navigation is discussed. Authors already have proposed a navigation algorithm for mobile robots with sonar sensors using fuzzy decision making theory. Fuzzy decision making selects the optimal via-point utilizing membership values of each via-point candidate for fuzzy navigation goals. However, to make a robot successfully navigate through an unknown and cluttered environment, one needs to adjust parameters of membership function, thus changing shape of MF, for each fuzzy goal. Furthermore, the change in robot configuration, like change in sensor arrangement or sensing range, invokes another adjusting of MFs. To accomplish an intelligent way to adjust these parameters, we adopted a genetic algorithm, which does not require any formulation of the problem, thus more appropriate for robot navigation. Genetic algorithm generates the fittest parameter set through crossover and mutation operation of its string representation. The fitness of a parameter set is assigned after a simulation run according to its time of travel, accumulated heading angle change and collision. A series of simulations for several different environments is carried out to verify the proposed method. The results show the optimal parameters can be acquired with this method.

  • PDF

클러스터 생성을 이용한 자기구성 퍼지 모델링 (Self-Organizing Fuzzy Modeling Using Creation of Clusters)

  • 고택범
    • 한국지능시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.334-340
    • /
    • 2002
  • 본 논문에서는 상대적으로 큰 퍼지 엔트로피를 갖는 입력-출력 데이터 집단에 다중 회귀 분석을 적용하여 다차원 평면 클러스터를 생성하고, 이 클러스터를 새로운 퍼지 모델의 규칙으로 추가한 후 모델 파라미터의 개략 동조와 정밀 동조를 반복 수행하는 자기구성 퍼지 모델링을 제안한다 Weighted recursive least squared 알고리즘과 fuzzy C-regression model 클러스터링에 의해 퍼지 모델의 파라미터를 개략적으로 동조한 후 gradient descent 알고리즘에 의해 파라미터를 정밀 동조하면서 감수분열 유전 알고리즘을 이용하여 최적의 학습률을 탐색한다. 그리고, 자기구성 퍼지 모델링 기법을 이용하여 Box-Jenkins의 가스로 데이터, 비선형 다변수 정적 함수의 데이터, 하수처리 활성오니 공정과 Mackey-Glass 시계열 데이터의 모델링을 수행하고, 기존의 방법에 의한 모델링 결과와 비교하여 그 성능을 입증한다.

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

예측 신경망을 이용한 적응 퍼지 논리 제어 (Adaptive Fuzzy Logic Control Using a Predictive Neural Network)

  • 정성훈
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.46-50
    • /
    • 1997
  • 퍼지논리 제어에서 정적인 퍼지규칙은 플랜트나 환경 파라메터의 중대한 변화에 대처할 수 없다. 이러한 문제를 해결하기 위하여 지금까지 스스로 조직화하는 퍼지제어 및 신경망에 기초한 뉴로퍼지등의 기법이 도입되었다.그러나 이러한 기존 방법들은 동적으로 변화된 퍼지 규칙이 완전하지 않거나 모순될 수 있음으로 해서 퍼지 제어기를 위험한 상황에 처하게 할수도 있다. 본 논문에서는 예측 신경망을 사용하여 새로운 적응퍼지 제어기법을 제안한다.제안된 퍼지제어기는 비록 제어 플랜트나 환경 파라메터가 변화할지라도 초기의 완전하고 모순되지 않은 퍼지 규칙과 계속해서 학습하는 예측 신경망의 예측에러를 이용하여 제어출력을 안전하게 적응적으로 변화시켜간다. 직류 서보모터의 위치제어문제를 이용하여 실험해본 결과 제안한 방법이 적응면에서 매우 유용함을 보였다.

  • PDF

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

퍼지-신경망 기반 고장진단 시스템의 설계 (Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme)

  • 김성호;김정수;박태홍;이종열;박귀태
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF