• 제목/요약/키워드: fuzzy parameters

검색결과 1,241건 처리시간 0.028초

실패유형의 종속성을 고려한 서비스 시스템의 FMEA 평가모델 (A Systematic Approach for Evaluating FMEA of a Service System under Considering the Dependences of Failure Modes)

  • 오형술;박노국
    • 벤처창업연구
    • /
    • 제9권1호
    • /
    • pp.177-186
    • /
    • 2014
  • FMEA는 실패로 인한 위험을 최소화하기위해 실패의 요인과 그로인한 영향을 사전에 평가하는 체계적인 방법이다. 이 방법은 제품의 신뢰도 문제를 해결하기 위해 제조산업 분야에서 주로 사용되어 왔으나, 서비스의 역할과 중요성이 커지면서 최근에는 이를 서비스의 신뢰도 문제에도 사용하고 있다. 하지만, 서비스에서는 고객이 서비스 전달 프로세스에 참여하며 고객마다의 이질성 등으로 인해 제조업을 위해 개발된 FMEA를 직접 사용할 수은 없다. 이러한 이유로 인해, FMEA를 서비스에 적용하기위한 여러 연구가 이루어지고 있다. 본 논문에서는, 심각도, 발생빈도, 검출력으로 우선순위를 평가하던 기존의 RPN 대신에, 서비스 특성을 고려하여 심각도, 발생빈도, 회복력 3가지로 평가하는 새로운 지수 S-RPN을 제시하였으며, 기존연구의 사례를 통해 제시된 방법의 효용성을 평가하였다.

  • PDF

Pattern Recognition of Ship Navigational Data Using Support Vector Machine

  • Kim, Joo-Sung;Jeong, Jung Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.268-276
    • /
    • 2015
  • A ship's sailing route or plan is determined by the master as the decision maker of the vessel, and depends on the characteristics of the navigational environment and the conditions of the ship. The trajectory, which appears as a result of the ship's navigation, is monitored and stored by a Vessel Traffic Service center, and is used for an analysis of the ship's navigational pattern and risk assessment within a particular area. However, such an analysis is performed in the same manner, despite the different navigational environments between coastal areas and the harbor limits. The navigational environment within the harbor limits changes rapidly owing to construction of the port facilities, dredging operations, and so on. In this study, a support vector machine was used for processing and modeling the trajectory data. A K-fold cross-validation and a grid search were used for selecting the optimal parameters. A complicated traffic route similar to the circumstances of the harbor limits was constructed for a validation of the model. A group of vessels was composed, each vessel of which was given various speed and course changes along a specified route. As a result of the machine learning, the optimal route and voyage data model were obtained. Finally, the model was presented to Vessel Traffic Service operators to detect any anomalous vessel behaviors. Using the proposed data modeling method, we intend to support the decision-making of Vessel Traffic Service operators in terms of navigational patterns and their characteristics.

CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계 (Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method)

  • 진용탁;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.91-96
    • /
    • 2015
  • 본 연구는 조명변화에 강인한 CT 전처리 기법 기반 개선된 얼굴인식 시스템을 소개한다. 전처리 알고리즘으로 CT알고리즘은 조명이 없는 환경에서도 얼굴의 지역적인 특징만을 추출한다. 얼굴의 지역적인 특징 추출을 가능하게 해준다. 처리된 데이터는 $(2D)^2$ 기반 대표적인 차원축소 알고리즘인 PCA를 사용하여 특징을 추출하였다. 전처리 알고리즘을 통한 특징 데이터는 제안한 방사형 기저함수 신경회로망의 입력으로 사용하였다. 방사형 기저함수 신경회로망의 은닉층은 FCM으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 또한 ABC 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 본 연구는 제안된 시스템의 성능 평가를 위해 Yale Face database B와 CMU PIE database로 실험하였다.

An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;shariati, Mahdi
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.785-809
    • /
    • 2014
  • In this paper, an Adaptive nerou-based inference system (ANFIS) is being used for the prediction of shear strength of high strength concrete (HSC) beams without stirrups. The input parameters comprise of tensile reinforcement ratio, concrete compressive strength and shear span to depth ratio. Additionally, 122 experimental datasets were extracted from the literature review on the HSC beams with some comparable cross sectional dimensions and loading conditions. A comparative analysis has been carried out on the predicted shear strength of HSC beams without stirrups via the ANFIS method with those from the CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94 codes of design. The shear strength prediction with ANFIS is discovered to be superior to CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94. The predictions obtained from the ANFIS are harmonious with the test results not accounting for the shear span to depth ratio, tensile reinforcement ratio and concrete compressive strength; the data of the average, variance, correlation coefficient and coefficient of variation (CV) of the ratio between the shear strength predicted using the ANFIS method and the real shear strength are 0.995, 0.014, 0.969 and 11.97%, respectively. Taking a look at the CV index, the shear strength prediction shows better in nonlinear iterations such as the ANFIS for shear strength prediction of HSC beams without stirrups.

Support Vector Machine을 이용한 문맥 민감형 융합 (Context Dependent Fusion with Support Vector Machines)

  • 허경용
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권7호
    • /
    • pp.37-45
    • /
    • 2013
  • 문맥 종속형 융합(CDF, Context Dependent Fusion)은 여러 분류기의 결과를 종합하여 성능을 향상시키는 융합 방법으로 주어진 문제의 문맥을 균일한 여러 문맥으로 나누고 각 문맥에서 문맥 종속적인 융합을 시도함으로써 기존 융합 방법에 비해 향상된 성능을 보여주었다. 하지만 CDF는 학습해야할 파라미터의 개수가 많아 학습 데이터가 적은 경우 잡음에 민감한 문제점이 있으며, 선형 알고리듬이라는 한계로 인해 문맥 추출 및 지역적 융합 과정에서 성능 저하의 원인이 된다. 본 논문에서는 CDF의 문제점을 완화할 수 있는 방법으로 SVM(Support Vector Machine)과 커널 주성분 분석을 이용한 CDF-SVM을 제안하였다. 커널 주성분 분석은 입력 벡터에 비선형 변환을 가함으로써 타원형이 아닌 비정형의 클러스터 생성이 가능하도록 해주며, SVM은 융합과정에서 비선형 경계의 생성을 가능하게 해주어 CDF의 선형성 제약을 극복하도록 해준다. 또한 목적함수에 정규화 항을 추가함으로써 잡음 민감성을 줄이도록 하였다. 제안한 CDF-SVM은 기존 CDF 및 그 변형들에 비해 나은 성능을 보여주었으며 이는 실험 결과를 통해 확인할 수 있다.

On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence

  • Gullu, Hamza;Fedakar, Halil ibrahim
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.441-464
    • /
    • 2017
  • The determination of the mixture parameters of stabilization has become a great concern in geotechnical applications. This paper presents an effort about the application of artificial intelligence (AI) techniques including radial basis neural network (RBNN), multi-layer perceptrons (MLP), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS) in order to predict the unconfined compressive strength (UCS) of silty soil stabilized with bottom ash (BA), jute fiber (JF) and steel fiber (SF) under different freeze-thaw cycles (FTC). The dosages of the stabilizers and number of freeze-thaw cycles were employed as input (predictor) variables and the UCS values as output variable. For understanding the dominant parameter of the predictor variables on the UCS of stabilized soil, a sensitivity analysis has also been performed. The performance measures of root mean square error (RMSE), mean absolute error (MAE) and determination coefficient ($R^2$) were used for the evaluations of the prediction accuracy and applicability of the employed models. The results indicate that the predictions due to all AI techniques employed are significantly correlated with the measured UCS ($p{\leq}0.05$). They also perform better predictions than nonlinear regression (NLR) in terms of the performance measures. It is found from the model performances that RBNN approach within AI techniques yields the highest satisfactory results (RMSE = 55.4 kPa, MAE = 45.1 kPa, and $R^2=0.988$). The sensitivity analysis demonstrates that the JF inclusion within the input predictors is the most effective parameter on the UCS responses, followed by FTC.

Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method

  • Toghroli, Ali;Darvishmoghaddam, Ehsan;Zandi, Yousef;Parvan, Mahdi;Safa, Maryam;Abdullahi, Muazu Mohammed;Heydari, Abbas;Wakil, Karzan;Gebreel, Saad A.M.;Khorami, Majid
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.525-530
    • /
    • 2018
  • As a nondestructive testing method, the Schmidt rebound hammer is widely used for structural health monitoring. During application, a Schmidt hammer hits the surface of a concrete mass. According to the principle of rebound, concrete strength depends on the hardness of the concrete energy surface. Study aims to identify the main variables affecting the results of Schmidt rebound hammer reading and consequently the results of structural health monitoring of concrete structures using adaptive neuro-fuzzy inference system (ANFIS). The ANFIS process for variable selection was applied for this purpose. This procedure comprises some methods that determine a subsection of the entire set of detailed factors, which present analytical capability. ANFIS was applied to complete a flexible search. Afterward, this method was applied to conclude how the five main factors (namely, age, silica fume, fine aggregate, coarse aggregate, and water) used in designing concrete mixture influence the Schmidt rebound hammer reading and consequently the structural health monitoring accuracy. Results show that water is considered the most significant parameter of the Schmidt rebound hammer reading. The details of this study are discussed thoroughly.

FCM을 적용한 결함심각도 기반 앙상블 모델 (Defect Severity-based Ensemble Model using FCM)

  • 이나영;권기태
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권12호
    • /
    • pp.681-686
    • /
    • 2016
  • 소프트웨어 결함 예측은 프로젝트의 효율적인 관리와 성공에 있어 중요한 요소이다. 이 결함은 심각도에 따라 프로젝트에 영향을 미치는 정도가 다르다. 그러나 기존 연구는 결함 유무만 관심을 두고 심각도를 고려하지 않는다. 본 논문에서는 소프트웨어 관리 효율과 품질 향상을 위해 FCM을 적용한 결함 심각도 기반 앙상블 모델을 제안한다. 제안된 모델은 FCM으로 NASA PC4의 결함심각도를 재분류한다. 그리고 RF(Random Forest)로 심각도에 영향을 주는 입력 column을 선별하여 데이터 핵심 결함 요인을 추출한다. 또한 10-fold 교차검증으로 파라미터를 변경해 모델 성능을 평가한다. 실험 결과는 다음과 같다. 첫째, 결함심각도가 58,40,80에서 30,20,128로 재분류되었다. 둘째, 심각도에 영향을 주는 중요한 입력 column은 정확도와 노드 불순도 측면에서 BRANCH_COUNT였다. 셋째, 성능평가는 트리수가 작고 고려할 변수가 많을수록 좋은 성능을 보였다.

접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법 (Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm)

  • 고동환;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.95-103
    • /
    • 1998
  • 접촉센서가 제공하는 tactile영상을 이용하여 접촉면의 형태를 인식할 때 영상의 모양은 접촉면에 가해지는 힘의 크기에 따라 변화된다. 따라서 많은 노력에도 부루하고 tactile 센서만을 이용하여 접촉면의 형태를 완전히 인식하는 것은 매우 어려운 일로 인식되고 있다. 본 논문에서는 이러한 문제를 해결하기 위해 tactile 영상이 얻어지는 때의 힘을 동시에 측정하고 힘에 따라 변화하는 영상의 모양을 퍼지융합 알고리즘을 이용하여 인식하는 방법을 제안한다. 접촉센서의 tactile 영상은 eigen vector해석 방벅을 적용하여 장축과 단축의 길이로 표현된다. 이들은 접촉 시에 가해지는 힘의 분포에 따른 경계선의 변호를 측정하여 만들어진 소속함수에 의해 퍼지화되며 Averaged Minkowski's distance를 이용하여 융합된다. 제안된 알고리즘은 다중센서시스템에 구현하여 실험하였으며 측정 시에 가해지는 힘의 크기 및 측정면의 종류에 고르게 86% 이상의 인식률을 보여 주었다. 제안된 알고리즘은 복수개의 손가락을 갖는 로봇의 손에 구현하면 작은 힘에도 변형되는 물체의 정밀한 조자이나 인식에 응용될 수 있다.

  • PDF

안벽구조물의 확률론적 VE/LCC 분석모델 적용방안 (Application of probabilistic VE/LCC Analysis Models for Quay Wall Structures)

  • 안종필;이증빈;박주원;유덕찬
    • 한국건설관리학회논문집
    • /
    • 제8권5호
    • /
    • pp.71-79
    • /
    • 2007
  • 최근 가치공학과 생애주기비용 분석의 중요성이 대두됨에 따라 항만구조물의 VE/LCC(Value Engineering/Life Cyccle Cost) 분석에 대한 연구개발이 활발하게 진행되고 있다. 반면에 항만구조물의 생애주기비용 산정과 가치분석의 실무 적용에 있어 이론적 모델과 표준지침 및 소프트웨어 등이 정립되어있지 않기 때문에 분석자에 따라 일관성과 전문성에 한계를 나타내고 있다. 특히 생애주기비용의 분석에 있어 현행의 확정론적 방법으로는 파괴손실비용의 산정이 어렵기 때문에 퍼지 신뢰성해석에 따라 파기확률을 파괴손실비용에 반영할 수 있는 확률론적 방법의 도입이 반드시 필요한 실정이다 따라서 본 연구에서는 안벽구조물의 설계에 있어 대안별 열화성능 차원의 설계를 수행하도록 유도하기 위하여 퍼지신뢰성 이론에 기초한 확률론적 VE/LCC 분석모델을 제안하였으며, 제안된 분석모델의 신뢰성과 활용성을 향상시키기 위한 측면에서 실제 대상 구조물에 적용하였다. 본 연구에서 제안된 방법론은 향후 다양한 분야의 설계 및 유지관리단계에서의 생애주기 비용과 가치분석의 의사결정에 활용되어질 것으로 사료된다.