• 제목/요약/키워드: fuzzy ontology

검색결과 27건 처리시간 0.03초

Incorporation of Fuzzy Theory with Heavyweight Ontology and Its Application on Vague Information Retrieval for Decision Making

  • Bukhari, Ahmad C.;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.171-177
    • /
    • 2011
  • The decision making process is based on accurate and timely available information. To obtain precise information from the internet is becoming more difficult due to the continuous increase in vagueness and uncertainty from online information resources. This also poses a problem for blind people who desire the full use from online resources available to other users for decision making in their daily life. Ontology is considered as one of the emerging technology of knowledge representation and information sharing today. Fuzzy logic is a very popular technique of artificial intelligence which deals with imprecision and uncertainty. The classical ontology can deal ideally with crisp data but cannot give sufficient support to handle the imprecise data or information. In this paper, we incorporate fuzzy logic with heavyweight ontology to solve the imprecise information extraction problem from heterogeneous misty sources. Fuzzy ontology consists of fuzzy rules, fuzzy classes and their properties with axioms. We use Fuzzy OWL plug-in of Protege to model the fuzzy ontology. A prototype is developed which is based on OWL-2 (Web Ontology Language-2), PAL (Protege Axiom Language), and fuzzy logic in order to examine the effectiveness of the proposed system.

Knowledge Representation Using Fuzzy Ontologies: A Survey

  • V.Manikandabalaji;R.Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.199-203
    • /
    • 2023
  • In recent decades, the growth of communication technology has resulted in an explosion of data-related information. Ontology perception is being used as a growing requirement to integrate data and unique functionalities. Ontologies are not only critical for transforming the traditional web into the semantic web but also for the development of intelligent applications that use semantic enrichment and machine learning to transform data into smart data. To address these unclear facts, several researchers have been focused on expanding ontologies and semantic web technologies. Due to the lack of clear-cut limitations, ontologies would not suffice to deliver uncertain information among domain ideas, conceptual formalism supplied by traditional. To deal with this ambiguity, it is suggested that fuzzy ontologies should be used. It employs Ontology to introduce fuzzy logical policies for ambiguous area concepts such as darkness, heat, thickness, creaminess, and so on in a device-readable and compatible format. This survey efforts to provide a brief and conveniently understandable study of the research directions taken in the domain of ontology to deal with fuzzy information; reconcile various definitions observed in scientific literature, and identify some of the domain's future research-challenging scenarios. This work is hoping that this evaluation can be treasured by fuzzy ontology scholars. This paper concludes by the way of reviewing present research and stating research gaps for buddy researchers.

패턴분류를 위한 온톨로지 기반 퍼지 분류기 (Ontology-based Fuzzy Classifier for Pattern Classification)

  • 이인근;손창식;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.814-820
    • /
    • 2008
  • 최근, 패턴분류에 온톨로지를 이용하려는 연구가 다양한 분야에서 시도되고 있다. 그러나 대부분의 이러한 연구에서는 패턴분류 관련 지식을 표현한 온톨로지지가 패턴분류 과정에서 단순히 참조되는 수준에 머물고 있다. 본 논문에서는 퍼지 규칙기반 분류기를 확장한 온톨로지 기반 퍼지 분류기를 제안한다. 이를 위해 퍼지규칙 기반 패턴분류 방법을 개념화하여 온톨로지를 구성하고, 패턴분류를 위한 온톨로지 추론 규칙을 생성한다. 그리고 IRIS 데이터집합의 패턴분류 실험을 통해 온톨로지 기반 퍼지 분류기의 타당성을 보인다.

온톨로지 기반의 전문가 시스템 구축을 위한 퍼지 추론 엔진 (Fuzzy Inference Engine for Ontology-based Expert Systems)

  • 최상균;김재생
    • 한국콘텐츠학회논문지
    • /
    • 제9권6호
    • /
    • pp.45-52
    • /
    • 2009
  • 최근 제조업에서 제품 설계를 지원하는 디지털 전문가 시스템을 개발하는 사례가 일어나고 있다. 이 시스템은 제조업에서 엔지니어가 프로세스를 통제하고, 생산관리와 시스템 관리 등을 위하여 사용되고 있다. 본 논문에서는 전문가 시스템을 구축하기 위한 온톨로지 기반의 추론 엔진 개발에 대하여 논한다. 전문가 시스템은 한국어를 지원하고 다양한 기능을 가지며, 그래픽한 온톨로지 맵 인터페이스와 퍼지 룰 기능 정의 등의 기능을 갖도록 하였다. 또한, 온톨로지 맵 구축과 온톨로지 기반의 퍼지 추론 방법에 대하여 지식을 표현하는 방법에 대하여 설명한다.

An Induced Hesitant Linguistic Aggregation Operator and Its Application for Creating Fuzzy Ontology

  • Kong, Mingming;Ren, Fangling;Park, Doo-Soon;Hao, Fei;Pei, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.4952-4975
    • /
    • 2018
  • An induced hesitant linguistic aggregation operator is investigated in the paper, in which, hesitant fuzzy linguistic evaluation values are associated with probabilistic information. To deal with these hesitant fuzzy linguistic information, an induced hesitant fuzzy linguistic probabilistic ordered weighted averaging (IHFLPOWA) operator is proposed, monotonicity, boundary and idempotency of IHFLPOWA are proved. Then andness, orness and the entropy of dispersion of IHFLPOWA are analyzed, which are used to characterize the weighting vector of the operator, these properties show that IHFLPOWA is extensions of the induced linguistic ordered weighted averaging operator and linguistic probabilistic aggregation operator. In this paper, IHFLPOWA is utilized to gather linguistic information and create fuzzy ontologies, and a movie fuzzy ontology as an illustrative case study is used to show the elaboration of the proposed method and comparison with the existing linguistic aggregation operators, it seems that the IHFLPOWA operator is an useful and alternative operator for dealing with hesitant fuzzy linguistic information with probabilistic information.

A Dynamic Ontology-based Multi-Agent Context-Awareness User Profile Construction Method for Personalized Information Retrieval

  • Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권4호
    • /
    • pp.270-276
    • /
    • 2012
  • With the increase in amount of data and information available on the web, there have been high demands on personalized information retrieval services to provide context-aware services for the web users. This paper proposes a novel dynamic multi-agent context-awareness user profile construction method based on ontology to incorporate concepts and properties to model the user profile. This method comprehensively considers the frequency and the specific of the concept in one document and its corresponding domain ontology to construct the user profile, based on which, a fuzzy c-means clustering method is adopted to cluster the user's interest domain, and a dynamic update policy is adopted to continuously consider the change of the users' interest. The simulation result shows that along with the gradual perfection of the our user profile, our proposed system is better than traditional semantic based retrieval system in terms of the Recall Ratio and Precision Ratio.

Conceptual Model for Fuzzy-CBR Support System for Collision Avoidance at Sea Using Ontology

  • Park, Gyei-Kark;Kim, Woong-Gyu;Benedictos, John Leslie RM
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.390-396
    • /
    • 2007
  • Fuzzy-CBR Collision Avoidance Support System is a system that finds a solution from past knowledge retrieved from the database and adapted to a new situation. Its algorithm has resulted to an adapting a solution for a new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology for identifying the concepts involved in a new environment and use them as inputs, for a ship collision avoidance support system., Similarity will be obtained through document articulation and using abstraction levels. A conceptual model of a maneuvering situation will be built using these ontologies.

Building a Conceptual Model Using Ontology for the Efficient Retrieval of Cases from Fuzzy-CBR of Collision Avoidance Support System

  • 박계각;;신성철;임남균;이미라
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.245-250
    • /
    • 2007
  • We have proposed Fuzzy-CBR to find a solution from past knowledge retrieved from the database and adapted to a new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology fur identifying the concepts involved in a new case, used as inputs, for a ship collision avoidance support system and in solving for similarity through document articulation and abstraction levels. These ontologies will be used to build a conceptual model of a maneuvering situation.

  • PDF

Document Clustering Using Semantic Features and Fuzzy Relations

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • 제11권3호
    • /
    • pp.179-184
    • /
    • 2013
  • Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.