• Title/Summary/Keyword: fuzzy number data

Search Result 342, Processing Time 0.027 seconds

Software Reliability Assessment with Fuzzy Least Squares Support Vector Machine Regression

  • Hwang, Chang-Ha;Hong, Dug-Hun;Kim, Jang-Han
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.486-490
    • /
    • 2003
  • Software qualify models can predict the risk of faults in the software early enough for cost-effective prevention of problems. This paper introduces a least squares support vector machine (LS-SVM) as a fuzzy regression method for predicting fault ranges in the software under development. This LS-SVM deals with the fuzzy data with crisp inputs and fuzzy output. Predicting the exact number of bugs in software is often not necessary. This LS-SVM can predict the interval that the number of faults of the program at each session falls into with a certain possibility. A case study on software reliability problem is used to illustrate the usefulness of this LS -SVM.

Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks based on Information Granulation and Evolutionary Algorithm

  • Park Ho-Sung;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.297-300
    • /
    • 2005
  • In this study, we proposed genetically optimized self-organizing fuzzy polynomial neural network based on information granulation and evolutionary algorithm (gdSOFPNN), develop a comprehensive design methodology involving mechanisms of genetic optimization. The proposed gdSOFPNN gives rise to a structural Iy and parametrically optimized network through an optimal parameters design available within FPN (viz. the number of input variables, the order of the polynomial, input variables, the number of membership functions, and the apexes of membership function). Here, with the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The performance of the proposed gdSOFPNN is quantified through experimentation that exploits standard data already used in fuzzy modeling.

  • PDF

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Approximate fuzzy clustering based on a density function (밀도 함수를 이용한 근사적 퍼지 클러스터링)

  • 손세호;권순학;최윤혁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.94-97
    • /
    • 2000
  • We introduce an approximate fuzzy clustering method, which is simple but computationally efficient, based on density functions in this paper. The density functions are defined by the number of data within the predetermined interval. Numerical examples are presented to show the validity of the proposed clustering method.

  • PDF

Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter (적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

Adaptive Data Mining Model using Fuzzy Performance Measures (퍼지 성능 측정자를 이용한 적응 데이터 마이닝 모델)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.541-546
    • /
    • 2006
  • Data Mining is the process of finding hidden patterns inside a large data set. Cluster analysis has been used as a popular technique for data mining. It is a fundamental process of data analysis and it has been Playing an important role in solving many problems in pattern recognition and image processing. If fuzzy cluster analysis is to make a significant contribution to engineering applications, much more attention must be paid to fundamental decision on the number of clusters in data. It is related to cluster validity problem which is how well it has identified the structure that Is present in the data. In this paper, we design an adaptive data mining model using fuzzy performance measures. It discovers clusters through an unsupervised neural network model based on a fuzzy objective function and evaluates clustering results by a fuzzy performance measure. We also present the experimental results on newsgroup data. They show that the proposed model can be used as a document classifier.

A Study on the Function Generating Capability of the Fuzzy Controllers (퍼지 제어기의 함수 구현능력에 대한 연구)

  • Lee, Ji-Hong;Chung, Byoung-Hyun;Chae, Seog;Oh, Young-Seok
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.87-97
    • /
    • 1992
  • Fuzzy controllers have been successfully applied to many cases to which conventional control algorithms are difficult to be applied. Even though the representations and the processings of data and information in the fuzzy controller are quite different from those in other control algorithms, the information processing operation that it caries out is basically a function ∫: $A{\subset}R^n{\to}R^m$, from a bounded subset A of an n-dimensional Euclidean space to a bounded subset f[A] of an m-dimensional Euclidean space, where n and m are the number of measured states and the number of control inputs of the controlled system, respectively. Under the assumptions of Mamdani's direct reasoning method and C.O.G.(center of gravity) defuzzification method, the fuzzy controllers are proven to perform the mapping of any given functions f with appropriately defined fuzzy sets. The mapping capabilities of fuzzy controllers are analyzed in detail for two cases, ∫: $R^{1}{\to}R^{1}$ and g: $R^{2}{\to}R^{1}$. Also, it will be shown that the results can be extended to multiple dimensional cases.

  • PDF

Nonlinear System Modeling Using Genetic Algorithm and FCM-basd Fuzzy System (유전알고리즘과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • 곽근창;이대종;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.491-499
    • /
    • 2001
  • In this paper, the scheme of an efficient fuzzy rule generation and fuzzy system construction using GA(genetic algorithm) and FCM(fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. In the structure identification, input data is transformed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, a set fuzzy rules are generated for a given criterion by FCM clustering algorithm . In the parameter identification premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this one can systematically obtain the valid number of fuzzy rules which shows satisfying performance for the given problem. Finally, we applied the proposed method to the Box-Jenkins data and rice taste data modeling problems and obtained a better performance than previous works.

  • PDF

The Application of Fuzzy Delphi Method in Forecasting of the price index of stocks (주가지수의 예측에 있어 Fuzzy Delphi 방법의 적용)

  • 김태호;강경식;김창은;박윤선;현광남
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.111-117
    • /
    • 1992
  • In the stock marketing. investor needs speedy and accurate decision making for the investment. A stock exchange index provides the important index of the early of 1993 in Korea using Fuzzy Delphi Method(F. D. M) which is widely used to a mid and long range forecasting in decision making problem. In the Fuzzy Delphi method, considerably qualified experts an first requested to give their opinion seperately and without intercommunication. The forecasting data of experts consist of Triangular Fuzzy Number (T.F.N) which represents the pessimistic, moderate, and optimistic forecast of a stock exchange index. A statistical analysis and dissemblance index are then made of these subject data. These new information are then transmitted to the experts once again, and the process of reestimation is continued until the process converges to a reasonable stable forecast of stock exchange index. The goal of this research is to forecast the stock exchange index using F.D.M. in which subjective data of experts are transformed into quasi -objective data index by some statistical analysis and fuzzy operations. (a) A long range forecasting problem must be considered as an uncertain but not random problem. The direct use of fuzzy numbers and fuzzy methods seems to be more compatible and well suited. (b) The experts use their individual competency and subjectivity and this is the very reason why we propose the use of fuzzy concepts. (c) If you ask an expert the following question: Consider the forecasting of the price index of stocks in the near future. This experts wi11 certainly be more comfortable giving an answer to this question using three types of values: the maximum value, the proper value, and the minimum value rather than an answer in terms of the probability.

  • PDF