• 제목/요약/키워드: fuzzy naive bayes

검색결과 5건 처리시간 0.021초

나이브베이스 분류자와 퍼지 추론을 이용한 적조 발생 예측의 성능향상 (Enhancing Red Tides Prediction using Fuzzy Reasoning and Naive Bayes Classifier)

  • 박선;이성로
    • 한국정보통신학회논문지
    • /
    • 제15권9호
    • /
    • pp.1881-1888
    • /
    • 2011
  • 적조란 유해조류의 일시적인 대 번식인 자연현상으로 어패류를 집단 폐사 시킨다. 적조에 의한 양식어업의 피해는 매년 발생하고 있다. 이 때문에 적조 발생을 미리 예측할 수 있으면 적조에 대한 피해를 최소화 시킬 수 있다. 적조발생 예측시 나이브베이스 분류자를 이용하면 좋은 예측결과를 얻을 수 있다. 그러나 나이브베이스를 이용한 결과는 단순한 발생 여부 만을 판별 할뿐 발생하는 적조가 어느 정도 증가 할지는 알 수 없다. 본 논문은 퍼지 추론과 나이브베이스 분류자를 이용한 새로운 적조발생 예측 방법을 제안한다. 제안방법은 적조 발생 예측의 정확률을 향상시키면서 적조생물 밀도의 증가율을 예측할 수 있다.

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.

러프집합과 퍼지 네이브 베이스 이론을 이용한 효율적인 추론 방법 (The Method of Effective Inference Using Rough Set and Fuzzy Naive Bayes Theory)

  • 황정식;손창식;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.117-120
    • /
    • 2005
  • 퍼지 규칙 기반 시스템에서 분류 및 경계를 결정하기 위한 방법으로 퍼지 규칙을 학습하는 다양한 방법들이 제안되고 있다. 그리고 추론 규칙간의 상관성을 고려하여 불필요한 속성을 제거함으로써 좀 더 효율적인 추론 결과를 얻을 수 있다. 따라서 본 논문에서는 퍼지 규칙 기반 시스템에서 각 규칙에 따른 결정 테이블를 작성하고 러프집합을 이용하여 불필요한 속성을 제거하였으며 규칙의 확신도에 퍼지 네이브 베이스 이론을 적용한 추론 방법을 제안한다.

  • PDF

다중 구조적응 자기구성지도의 퍼지결합을 이용한 웹 마이닝 (Web Mining Using Fuzzy Integration of Multiple Structure Adaptive Self-Organizing Maps)

  • 김경중;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.61-70
    • /
    • 2004
  • 폭발적으로 성장하고 있는 웹은 수백만 개의 웹 문서를 포함하고 있기 때문에, 적절한 웹사이트를 찾기 어렵다. 사용자 프로파일을 사용하여 적절한 웹사이트를 추천함으로써 웹의 탐색을 개인화 할 수도 있지만 웹 컨텐츠에 대한 사용자의 평가는 사용자의 성격에 관한 다양한 측면을 표현하므로 사용자의 선호도를 예측하기 위해서는 보다 효과적인 방법이 필요하다. 사용자 프로파일은 비선형적인 특성을 가지고 있으므로 분류기를 사용하여 예측하여야 하며 다양한 특성을 예측하기 위해 분류기의 결합이 필요하다. 패턴분류와 시각화에 유용한 구조적응 자기구성지도(SASOM)는 개선된 SOM 모델로서 웹 마이닝에 적절하다. 퍼지 적분은 주관적으로 정의된 분류기의 중요도를 이용하여 결합하는 방법이다. 본 논문에서는 독립적으로 학습된 SASOM의 퍼지적분(fuzzy integral)기반 결합을 이용하여 사용자의 프로파일을 예측하고 UCI 벤치마크 데이타인 Syskill & Webert 데이타를 사용하여 그 성능을 평가한다. 실험결과 제안한 방법이 기존의 naive Bayes 분류기뿐만 아니라 SASOM의 투표결합보다 우수한 성능을 보였다.

다중 구조적응 자기구성지도의 퍼지결합을 이용한 웹 문서 분류 (Web Documents Classification with Fuzzy Integration of Multiple Structure-Adaptive Self-Organizing Maps)

  • 김경중;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.371-373
    • /
    • 2003
  • 웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.

  • PDF