• Title/Summary/Keyword: fuzzy modules

Search Result 84, Processing Time 0.036 seconds

An Autonomous Mobile Robot Control Method based on Fuzzy-Artificial Immune Networks and RBFN (퍼지-인공면역망과 RBFN에 의한 자율이동로봇 제어)

  • 오홍민;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.679-688
    • /
    • 2003
  • In order to navigate the mobile robots safely in unknown environments, many researches have been studied to devise navigational algorithms for the mobile robots. In this paper, we propose a navigational algorithm that consists of an obstacle-avoidance behavior module, a goal-approach behavior module and a radial basis function network(RBFN) supervisor. In the obstacle-avoidance behavior module and goal-approach behavior module, the fuzzy-artificial immune networks are used to select a proper steering angle which makes the autonomous mobile robot(AMR) avoid obstacles and approach the given goal. The RBFN supervisor is employed to combine the obstacle-avoidance behavior and goal-approach behavior for reliable and smooth motion. The outputs of the RBFN are proper combinational weights for the behavior modules and velocity to steer the AMR appropriately. Some simulations and experiments have been conducted to confirm the validity of the proposed navigational algorithm.

Computer Aided Diagnosis System based on Performance Evaluation Agent Model

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • In this paper, we present a performance evaluation agent based on fuzzy cluster analysis and validity measures. The proposed agent is consists of three modules, fuzzy cluster analyzer, performance evaluation measures, and feature ranking algorithm for feature selection step in CAD system. Feature selection is an important step commonly used to create more accurate system to help human experts. Through this agent, we get the feature ranking on the dataset of mass and calcification lesions extracted from the public real world mammogram database DDSM. Also we design a CAD system incorporating the agent and apply five different feature combinations to the system. Experimental results proposed approach has higher classification accuracy and shows the feasibility as a diagnosis supporting tool.

Chaos Simulator as a Developing Tool for Application of Chaos Engineering

  • Kuwata, Kaihei;Kajitani, Yuji;Katayama, Ryu;Nishida, Yukiteru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.853-856
    • /
    • 1993
  • In this paper, we describe a chaos simulator as a developing tool for applications of chaos engineering. This simulator is composed of three modules, such as generation module of chaotic signals by deterministic rules, determination module whether observed time series is chaos or not, and nonlinear system identification module by self generating Neuro Fuzzy Model.

  • PDF

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

Implementation of Intelligent Container System and Information Processing Using Fuzzy Logic (지능형 컨테이너 시스템의 구현과 퍼지 논리를 이용한 정보처리)

  • Son, Sang-Hyuk;Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.398-403
    • /
    • 2009
  • The recent trend of logistics demands for improved monitoring system of the inside of containers including current temperature and other environmental conditions. This paper presents an information processing technique with fuzzy logic that recognizes the current situations inside the target container and can be implemented on intelligent container systems. The ZigBee modules are used to collect information such as temperature, humidity, and shock inside the container in ubiquitous environment. The information processing system using fuzzy logic and the InTouch, one of SCADA(Supervisory Control and Data Acquisition) systems, is implemented to monitor the inside of the container and predict the emergency state.

Golf Swing Classification Using Fuzzy System (퍼지 시스템을 이용한 골프 스윙 분류)

  • Park, Junwook;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.380-392
    • /
    • 2013
  • A method to classify a golf swing motion into 7 sections using a Kinect sensor and a fuzzy system is proposed. The inputs to the fuzzy logic are the positions of golf club and its head, which are extracted from the information of golfer's joint position and color information obtained by a Kinect sensor. The proposed method consists of three modules: one for extracting the joint's information, another for detecting and tracking of a golf club, and the other for classifying golf swing motions. The first module extracts the hand's position among the joint information provided by a Kinect sensor. The second module detects the golf club as well as its head with the Hough line transform based on the hand's coordinate. Using a fuzzy logic as a classification engine reduces recognition errors and, consequently, improves the performance of robust classification. From the experiments of real-time video clips, the proposed method shows the reliability of classification by 85.2%.

Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA (퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계)

  • Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.

Predictive Control for Linear Motor Conveyance Positioning System using DR-FNN

  • Lee, Jin-Woo;Sohn, Dong-Seop;Min, Jeong-Tak;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.307-310
    • /
    • 2003
  • In the maritime container terminal, LMTT(Linear Motor-based Transfer Technology) is horizontal transfer system for the yard automation, which has been proposed to take the place of AGV(Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc., LMCPS (Linear Motor Conveyance Positioning System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCPS using DR-FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

Appearance Based Object Identification for Mobile Robot Localization in Intelligent Space with Distributed Vision Sensors

  • Jin, TaeSeok;Morioka, Kazuyuki;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2004
  • Robots will be able to coexist with humans and support humans effectively in near future. One of the most important aspects in the development of human-friendly robots is to cooperation between humans and robots. In this paper, we proposed a method for multi-object identification in order to achieve such human-centered system and robot localization in intelligent space. The intelligent space is the space where many intelligent devices, such as computers and sensors, are distributed. The Intelligent Space achieves the human centered services by accelerating the physical and psychological interaction between humans and intelligent devices. As an intelligent device of the Intelligent Space, a color CCD camera module, which includes processing and networking part, has been chosen. The Intelligent Space requires functions of identifying and tracking the multiple objects to realize appropriate services to users under the multi-camera environments. In order to achieve seamless tracking and location estimation many camera modules are distributed. They causes some errors about object identification among different camera modules. This paper describes appearance based object representation for the distributed vision system in Intelligent Space to achieve consistent labeling of all objects. Then, we discuss how to learn the object color appearance model and how to achieve the multi-object tracking under occlusions.

LMTT Positioning System Control using DR-FNN (DR-FNN을 이용한 LMTT Positioning System 제어)

  • Lee, Jin-Woo;Sohn, Dong-Sop;Min, Jung-Tak;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2206-2208
    • /
    • 2003
  • LMTT(Linear Motor-based Transfer Technology) is horizontal transfer system in the maritime container terminal for the port automation. The system is modeled PMLSM(Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car(mover). Because of large variant of movers weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's default etc., LMCS(Linear Motor Conveyance System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCS using DR-FNN(Dynamically Constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF