• Title/Summary/Keyword: fuzzy models

Search Result 658, Processing Time 0.028 seconds

On A New Framework of Autoregressive Fuzzy Time Series Models

  • Song, Qiang
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.357-368
    • /
    • 2014
  • Since its birth in 1993, fuzzy time series have seen different classes of models designed and applied, such as fuzzy logic relation and rule-based models. These models have both advantages and disadvantages. The major drawbacks with these two classes of models are the difficulties encountered in identification and analysis of the model. Therefore, there is a strong need to explore new alternatives and this is the objective of this paper. By transforming a fuzzy number to a real number via integrating the inverse of the membership function, new autoregressive models can be developed to fit the observation values of a fuzzy time series. With the new models, the issues of model identification and parameter estimation can be addressed; and trends, seasonalities and multivariate fuzzy time series could also be modeled with ease. In addition, asymptotic behaviors of fuzzy time series can be inspected by means of characteristic equations.

Calculating Attribute Values using Interval-valued Fuzzy Sets in Fuzzy Object-oriented Data Models (퍼지객체지향자료모형에서 구간값 퍼지집합을 이용한 속성값 계산)

  • Cho Sang-Yeop;Lee Jong-Chan
    • Journal of Internet Computing and Services
    • /
    • v.4 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • In general, the values for attribute appearing in fuzzy object-oriented data models are represented by the fuzzy sets. If it can allow the attribute values in the fuzzy object-oriented data models to be represented by the interval-valued fuzzy sets, then it can allow the fuzzy object-oriented data models to represent the attribute values in more flexible manner. The attribute values of frames appearing in the inheritance structure of the fuzzy object-oriented data models are calculated by a prloritized conjunction operation using interval-valued fuzzy sets. This approach can be applied to knowledge and information processing in which degree of membership is represented as not the conventional fuzzy sets but the interval-valued fuzzy sets.

  • PDF

MULTI-OBJECTIVES FUZZY MODELS FOR DESIGNING 3D TRAJECTORY IN HORIZONTAL WELLS

  • Qian, Weiyi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.265-275
    • /
    • 2004
  • In this paper, multi-objective models for designing 3D trajectory of horizontal wells are developed in a fuzzy environment. Here, the objectives of minimizing the length of the trajectory and the error of entry target point are fuzzy in nature. Some parameters, such as initial value, end value, lower bound and upper bound of the curvature radius, tool-face angle and the arc length of each curve section, are also assumed to be vague and imprecise. The impreciseness in the above objectives have been expressed by fuzzy linear membership functions and that in the above parameters by triangular fuzzy numbers. Models have been solved by the fuzzy non-linear programming method based on Zimmermann [1] and Lee and Li [2]. Models are applied to practical design of the horizontal wells. Numerical results illustrate the accuracy and efficiency of the fuzzy models.

A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

  • PDF

FUZZY REGRESSION ANALYSIS WITH NON-SYMMETRIC FUZZY COEFFICIENTS BASED ON QUADRATIC PROGRAMMING APPROACH

  • Lee, Haekwan;Hideo Tanaka
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.63-68
    • /
    • 1998
  • This paper proposes fuzzy regression analysis with non-symmetric fuzzy coefficients. By assuming non-symmetric triangular fuzzy coefficients and applying the quadratic programming fomulation, the center of the obtained fuzzy regression model attains more central tendency compared to the one with symmetric triangular fuzzy coefficients. For a data set composed of crisp inputs-fuzzy outputs, two approximation models called an upper approximation model and a lower approximation model are considered as the regression models. Thus, we also propose an integrated quadratic programming problem by which the upper approximation model always includes the lower approximation model at any threshold level under the assumption of the same centers in the two approximation models. Sensitivities of Weight coefficients in the proposed quadratic programming approaches are investigated through real data.

  • PDF

Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers

  • Nadiri, Ata Allah;Asadi, Somayeh;Babaizadeh, Hamed;Naderi, Keivan
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.103-110
    • /
    • 2018
  • This study introduces the supervised committee fuzzy model as a hybrid fuzzy model to predict compressive strength (CS) of geopolymers prepared from alumina-silica products. For this purpose, more than 50 experimental data that evaluated the effect of $Al_2O_3/SiO_2$, $Na_2O/Al_2O_3$, $Na_2O/H_2O$ and Na/[Na+K] on (CS) of geopolymers were collected from the literature. Then, three different Fuzzy Logic (FL) models (Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL)) were adopted to overcome the inherent uncertainty of geochemical parameters and to predict CS. After validating the model, it was found that the SFL model is superior to MFL and LFL models, but each of the FL models has advantages to predict CS. Therefore, to achieve the optimal performance, the supervised committee fuzzy logic (SCFL) model was developed as a hybrid method to combine the benefits of individual FL models. The SCFL employs an artificial neural network (ANN) model to re-predict the CS of three FL model predictions. The results also show significant fitting improvement in comparison with individual FL models.

Precipitation forecasting by fuzzy Theory : II. Applicability of Fuzzy Time Series (퍼지론에 의한 강수 예측 : II. 퍼지 시계열의 적용성)

  • Kim, Hung-Soo;La, Chang-Jin;Kim, Joong-Hoon;Kang, In-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.631-638
    • /
    • 2002
  • Stochastic model has been widely used for the forecasting of time series. However, this study tries to perform the precipitation forecasting by fuzzy time series model using fuzzy concept. The published fuzzy based models are used for the forecasting of time series and also we suggest that the combination of fuzzy time series models and neuro-fuzzy system can increase the forecastibility of the models. The precipitation time series in illinois, USA is analyzed for the forecasting by the known fuzzy time series models and the suggested methodology in this study. As a result, we know that the suggested methodology shows more exact results than the known models.

Fuzzy Local Linear Regression Analysis

  • Hong, Dug-Hun;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.515-524
    • /
    • 2007
  • This paper deals with local linear estimation of fuzzy regression models based on Diamond(1998) as a new class of non-linear fuzzy regression. The purpose of this paper is to introduce a use of smoothing in testing for lack of fit of parametric fuzzy regression models.

  • PDF

Design of Fuzzy Models with the Aid of an Improved Differential Evolution (개선된 미분 진화 알고리즘에 의한 퍼지 모델의 설계)

  • Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.399-404
    • /
    • 2012
  • Evolutionary algorithms such as genetic algorithm (GA) have been proven their effectiveness when applying to the design of fuzzy models. However, it tends to suffer from computationally expensWive due to the slow convergence speed. In this study, we propose an approach to develop fuzzy models by means of an improved differential evolution (IDE) to overcome this limitation. The improved differential evolution (IDE) is realized by means of an orthogonal approach and differential evolution. With the invoking orthogonal method, the IDE can search the solution space more efficiently. In the design of fuzzy models, we concern two mechanisms, namely structure identification and parameter estimation. The structure identification is supported by the IDE and C-Means while the parameter estimation is realized via IDE and a standard least square error method. Experimental studies demonstrate that the proposed model leads to improved performance. The proposed model is also contrasted with the quality of some fuzzy models already reported in the literature.

Design of IG-based Fuzzy Models Using Improved Space Search Algorithm (개선된 공간 탐색 알고리즘을 이용한 정보입자 기반 퍼지모델 설계)

  • Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.686-691
    • /
    • 2011
  • This study is concerned with the identification of fuzzy models. To address the optimization of fuzzy model, we proposed an improved space search evolutionary algorithm (ISSA) which is realized with the combination of space search algorithm and Gaussian mutation. The proposed ISSA is exploited here as the optimization vehicle for the design of fuzzy models. Considering the design of fuzzy models, we developed a hybrid identification method using information granulation and the ISSA. Information granules are treated as collections of objects (e.g. data) brought together by the criteria of proximity, similarity, or functionality. The overall hybrid identification comes in the form of two optimization mechanisms: structure identification and parameter identification. The structure identification is supported by the ISSA and C-Means while the parameter estimation is realized via the ISSA and weighted least square error method. A suite of comparative studies show that the proposed model leads to better performance in comparison with some existing models.