• 제목/요약/키워드: fuzzy modelling

검색결과 96건 처리시간 0.027초

장애물 회피를 위한 자율이동로봇의 퍼지제어 (A Fuzzy Control of Autonomous Mobile Robot for Obstacle Avoidance)

  • 채문석;정태영;강석범;양태규
    • 한국정보통신학회논문지
    • /
    • 제10권9호
    • /
    • pp.1718-1726
    • /
    • 2006
  • 본 논문에서는 미지의 공간에서 장애물 검출시 스스로 회피를 계획하고 임무를 수행할 수 있는 자율주행 로봇의 주행 알고리즘을 퍼지제어기를 이용하여 설계하였다 장애물의 위치 와 거 리 인식을 위해 초음파센서를 사용하였으며 좌, 우측 바퀴의 각속도 출력 제어를 위하여 퍼지 제어기를 사용하였다. 퍼지제어기의 퍼지화 방법은 싱글톤 방법, 제어규칙은 각 바퀴 49개, 추론법은 간략화 된 Mamdani의 추론법, 비퍼지화 방법은 간략화된 무게중심 법을 사용하였다. 제안한 회피 알고리즘과 퍼지 제어기의 성능 및 실제 적용 가능성의 평가를 위해 이동로봇의 모델링에 근거 한 컴퓨터 시뮬레이션을 수행하였다. 그 결과 이동로봇이 목적지점에 정확히 도착함과 주행 중 인식한 장애물을 효과적으로 회피함을 보였다.

적응퍼지논리를 이용한 Mobile Vehicle의 횡방향 제어기 구현 (The implementation of a Lateral Controller for the Mobile Vehicle using Adaptive Fuzzy Logics)

  • 김명중;이창구;김성중
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권5호
    • /
    • pp.249-256
    • /
    • 2000
  • This paper deals with the control of the lateral motion of a mobile vehicle. A mobile vehicle using in this experiment is able to adapt many unmanned automatic driving system, for example, like a automated product transporting system. This vehicle is consist of the two servomotors. One is used to accelerate this vehicle and the another is used to change this lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral motion of the vehicle. Therefore, the main aim of this paper is investigate the possibility of applying adaptive fuzzy control algorithms to a microprocessor-based servomotor controller which requires faster and more accurate response compared with many other industrial processes. Fuzzy control rules are derived by modelling an expert's driving actions. Experiments are performed using a mobile vehicle with sensing units, a microprocessor and a host computer.

  • PDF

TSK 퍼지시스템을 결론부가 singleton인 퍼지시스템으로 표현하는 방법과 그 응용 (Transformation of TSK fuzzy systems into fuzzy systems with singleton consequents and its applications)

  • 채양범;이원창;강근택
    • 전자공학회논문지CI
    • /
    • 제39권1호
    • /
    • pp.48-59
    • /
    • 2002
  • 본 논문에서는 어느 한 TSK(Takagi-Sugeno-Kang) 퍼지시스템이 주어 졌을 때 그 퍼지시스템과 동일한 입출력 관계를 갖는 singleton 퍼지시스템을 구하는 방법을 제안하고 응용 예를 보인다. 퍼지규칙의 결론부가 선형식인 퍼지시스템(TSK퍼지시스템)은 입출력 데이터로 모델 인식이 체계적으로 쉽게 이루어 질 수 있으며, 안정성을 보장하는 퍼지제어기 설계도 관한 연구도 많이 되어 있다. 한편 퍼지규칙 결론부가 실수인 퍼지시스템(singleton 퍼지시스템)은 규칙이 언어적 형태이므로 이해하기가 쉽고, 규칙의 조정이 용이한 장점이 있다. 이러한 두 퍼지 시스템의 장점을 살릴 수 있는 방안으로, TSK 퍼지시스템을 singleton 퍼지시스템으로 변환시키는 방법을 제안하며, 제안한 방법을 퍼지모델링과 퍼지제어기 설계에 응용하여 그 실용성을 보인다.

Application of the ANFIS model in deflection prediction of concrete deep beam

  • Mohammadhassani, Mohammad;Nezamabadi-Pour, Hossein;Jumaat, MohdZamin;Jameel, Mohammed;Hakim, S.J.S.;Zargar, Majid
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.323-336
    • /
    • 2013
  • With the ongoing development in the computer science areas of artificial intelligence and computational intelligence, researchers are able to apply them successfully in the construction industry. Given the complexities indeep beam behaviour and the difficulties in accurate evaluation of its deflection, the current study has employed the Adaptive Network-based Fuzzy Inference System (ANFIS) as one of the modelling tools to predict deflection for high strength self compacting concrete (HSSCC) deep beams. In this study, about 3668measured data on eight HSSCC deep beams are considered. Effective input data and the corresponding deflection as output data were recorded at all loading stages up to failure load for all tested deep beams. The results of ANFIS modelling and the classical linear regression were compared and concluded that the ANFIS results are highly accurate, precise and satisfactory.

계층적 분석방법을 이용한 실시간 퍼지로봇핸드의 양방향 제어의 구현 (Implementation of Real-Time Bilateral Control of Fuzzy Robot Hand using Analytic Hierachy Process)

  • 진현수;홍유식
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.525-532
    • /
    • 2004
  • 원격 조작기는 같은 일을 반복적으로 수행하지 않는다는 점에서 산업용 로봇과는 구별된다. 즉 조작자가 작업을 하는 동안 직접 판단을 내리며 조작기에 제어 명령을 내린다는 점에서 조작자도 원격 조작기를 제어하기 위한 제어루프에 포함된다. PID 제어에 의존하는 원격 제어기의 모델링 오차를 줄이기 위한 방법이 퍼지 제어기의 구현이라 할 수 있는데 위치-힘 제어 방식의 양방향 제어에서는 진동으로 인한 불안정성을 내포하고 있다 비선형성에 의한 모델링 오차를 계층제어 방식에서는 여러 각도의 입력을 종합하여 판단한 조작자의 경험적 제어 규칙을 선형적으로 변환 모델링 함으로써 안정화시킬 수 있다. 즉, 다속성 계층을 사용함으로써 선형적인 결과를 얻어 낼 수가 있다.

지식기반 퍼지 추론을 이용한 디젤기관 연소계통의 고장진단 시스템에 관한 연구 (A Study on the Fault Diagnosis System for Combustion System of Diesel Engines Using Knowledge Based Fuzzy Inference)

  • 유영호;천행춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.42-48
    • /
    • 2003
  • In general many engineers can diagnose the fault condition using the abnormal ones among data monitored from a diesel engine, but they don't need the system modelling or identification for the work. They check the abnormal data and the relationship and then catch the fault condition of the engine. This paper proposes the construction of a fault diagnosis engine through malfunction data gained from the data fault detection system of neural networks for diesel generator engine, and the rule inference method to induce the rule for fuzzy inference from the malfunction data of diesel engine like a site engineer with a fuzzy system. The proposed fault diagnosis system is constructed in the sense of the Malfunction Diagnosis Engine(MDE) and Hierarchy of Malfunction Hypotheses(HMH). The system is concerned with the rule reduction method of knowledge base for related data among the various interactive data.

GA-퍼지 제어기를 이용한 크레인의 안정화에 관한 연구 (A Study on the stabilization of Crane system using GA-fuzzy controller)

  • 오경근;허동렬;주석민;정형환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2473-2475
    • /
    • 2000
  • In this paper, we design a GA-fuzzy controller for position control and anti-swing at the destination point. Applied genetic algorithm is used to complement the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling.

  • PDF

퍼지추론을 이용한 시스템 모델링 및 오토-튜닝의 구현 (System Modelling with Fuzzy Inference and Its Implementation to Auto-Tuning)

  • 이동진;이은철;변황우;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.214-217
    • /
    • 1993
  • This paper presents a new identification method which utilizes fuzzy inference in parameter identification. The proposed system has an additional control loop where a real plant is replaced by a plant model. The control system to be designed is to satisfy the following specifications: 1) It has zero steady-state error. 2) It has adequate damping characteristics. 3) 1),2) satisfied, it has a shortest rise-time. Fuzzy rules describe the relationship between comparison results of the features and magnitude of modification in the model parameter values. This method is effective in auto-tuning because the response of the closed loop is verified. The proposed method is tested in simulation for several plants with first- order lags and dead-times. The results show that the proposed method is effective in practical use.

  • PDF

Neuro-fuzzy model of concrete exposed to various regimes combined with De-icing salts

  • Ghazy, Ahmed;Bassuoni, Mohamed. T.
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.649-659
    • /
    • 2018
  • Adaptive neuro-fuzzy inference systems (ANFIS) can be efficient in modelling non-linear, complex and ambiguous behavior of cement-based materials undergoing combined damage factors of different forms (physical and chemical). The current work investigates the use of ANFIS to model the behavior (time of failure (TF)) of a wide range of concrete mixtures made with different types of cement (ordinary and portland limestone cement (PLC)) without or with supplementary cementitious materials (SCMs: fly ash and nanosilica) under various exposure regimes with the most widely used chloride-based de-icing salts (individual and combined). The results show that predictions of the ANFIS model were rational and accurate, with marginal errors not exceeding 3%. In addition, sensitivity analyses of physical penetrability (magnitude of intruding chloride) of concrete, amount of aluminate and interground limestone in cement and content of portlandite in the binder showed that the predictive trends of the model had good agreement with experimental results. Thus, this model may be reliably used to project the deterioration of customized concrete mixtures exposed to such aggressive conditions.

NNDI decentralized evolved intelligent stabilization of large-scale systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.1-15
    • /
    • 2022
  • This article focuses on stability analysis and fuzzy controller synthesis for large neural network (NN) systems consisting of several interconnected subsystems represented by the NN model. Advanced and fuzzy NN differential inclusion (NNDI) for stability based on the developed algorithm with H infinity can be designed based on the evolved biological design. This representation is constructed using sector linearity for NN models. Sector linearity transforms a non-linear model into a linear model based on proposed operations. New sufficient conditions are realized in the form of LMI (linear matrix inequalities) to ensure the asymptotic stability of the trans-Lyapunov function. This transforms the nonlinear model into a linear model based on multiple rules. At last, a numerical case study with simulations is derived as illustration to prove its feasibility in real nonlinear structures.