International Journal of Fuzzy Logic and Intelligent Systems
/
v.7
no.1
/
pp.58-65
/
2007
Behavioral sequences of the medaka (Oryzias latipes) were continuously investigated through an automatic image recognition system in response to medaka treated with the insecticide and medaka not treated with the insecticide, diazinon (0.1 mg/l) during a 1 hour period. The observation of behavior through the movement tracking program showed many patterns of the medaka. After much observation, behavioral patterns were divided into four basic patterns: active-smooth, active-shaking, inactive-smooth, and inactive-shaking. The "smooth" and "shaking" patterns were shown as normal movement behavior. However, the "shaking" pattern was more frequently observed than the "smooth" pattern in medaka specimens that were treated with insecticide. Each pattern was classified using classification methods after the feature choice. It provides a natural way to incorporate prior knowledge from human experts in fish behavior and contains the information in a logical expression tree. The main focus of this study was. to determine whether the decision tree could be useful for interpreting and classifying behavior patterns of the medaka.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.3
/
pp.163-172
/
2016
Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.
Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
Journal of Electrical Engineering and information Science
/
v.3
no.3
/
pp.355-365
/
1998
The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.3
no.1
/
pp.1-6
/
2003
The Delayed Feedback Control method (DFC) proposed by Pyragas applies an input based on the difference between the current state of the system, which is generating chaos orbits, and the $\tau$-time delayed state, and stabilizes the chaos orbit into a target. In DFC, the information about a position in the state space is unnecessary if the period of the unstable periodic orbit to stabilize is known. There exists the fault that DFC cannot stabilize the unstable periodic orbit when a linearlized system around the periodic point has an odd number property. There is the chaos control method using the prediction of the $\tau$-time future state (PDFC) proposed by Ushio et al. as the method to compensate this fault. Then, we propose a method such as improving the fault of the DFC. Namely, we combine DFC and PDFC with parameter W, which indicates the balance of both methods, not to lose each advantage. Therefore, we stabilize the state into the $\tau$ periodic orbit, and ask for the ranges of Wand gain K using Jury' method, and determine the quasi-optimum pair of (W, K) using a genetic algorithm. Finally, we apply the proposed method to a discrete-time chaotic system, and show the efficiency through some examples of numerical experiments.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.1
/
pp.67-72
/
2002
In order to offer a service of highly qualified information, software of good quality should be designed and developed. We need the united estimation method because the existing approaches for the quality measurements measure the attributes at the different viewpoint individually. Therefor, this paper Propose the model that handles many methods of measurements. Our model selects the ratio scales and calculates the relative significance of them by using the rough logic. As a next step, the proposed method integrates the significance of scales and the measured value of them based upon the fuzzy integral. Finally, the correlations are analyzed between the existing scales with our measurements and our model is validated through statistical technique.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.8
no.4
/
pp.270-275
/
2008
Under ubiquitous environment, recommendation system is using the collaborative filtering methods by quantifying context information, but insufficient context information can cause inaccurate recommendation result. In order to solve such problems, the researcher used context information and user's profile. But service history information in users' profiles can have the problems of being influenced by change of the user's taste or fashion as time passes by. In addition, context information and user's profile can't be properly inter-locked according to situation, which can cause inaccurate predictability. In this paper, in case a user's taste or fashion is changed as time passes by, the researcher didn't apply bundled-up value to the user's profile but applied different weight according to change of time. And the researcher could solve the problem that context information and a user's profile can't be properly inter-locked according to situation by applying different weight to the result gained by means of collaborative filtering and then by unifying it. In such ways, the researcher could improve predictability.
The Transactions of The Korean Institute of Electrical Engineers
/
v.58
no.2
/
pp.342-348
/
2009
This paper introduces a novel denoising algorithm for the partial-discharge(PD) signals from power apparatuses. The developed algorithm includes three kinds of specific denoising sub-algorithms. The first sub-algorithm uses the fuzzy logic which classifies the noise types in the magnitude versus phase PD pattern. This sub-algorithm is especially effective in the rejection of the noise with high and constant magnitude. The second one is the method simply removing the pulses in the phase sections below the threshold count in the count versus phase pattern. This method is effective in removing the occasional high level noise pulses. The last denoising sub-algorithm uses the grouping characteristics of PD pulses in the 3D plot of the magnitude versus phase versus cycle. This special technique can remove the periodical noise pulses with varying magnitudes, which are very difficult to be removed by other denoising methods. Each of the sub-algorithm has different characteristic and shows different quality of the noise rejection. On that account, a parameter which numerically expresses the noise possessing degree of signal, is defined and evaluated. Using the parameter and above three sub-algorithms, an adaptive complex noise rejection algorithm for the on-line PD diagnosis system is developed. Proposed algorithm shows good performances in the various real PD signals measured from the power apparatuses in the Korean plants.
Bae Hyeon;Kim Youn-Tae;Kim Sung-Shin;Vachtsevanos George J.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.5
no.3
/
pp.200-205
/
2005
The objectives of this study were to introduce the easiest and most proper applications of datamining in industrial processes. Applying datamining in manufacturing is very different from applying it in marketing. Misapplication of datamining in manufacturing system results in significant problems. Therefore, it is very important to determine the best procedure and technique in advance. In previous studies, related literature has been introduced, but there has not been much description of datamining applications. Research has not often referred to descriptions of particular examples dealing with application problems in manufacturing. In this study, a datamining roadmap was proposed to support datamining applications for industrial processes. The roadmap was classified into three stages, and each stage was categorized into reasonable classes according to the datamining purposed. Each category includes representative techniques for datamining that have been broadly applied over decades. Those techniques differ according to developers and application purposes; however, in this paper, exemplary methods are described. Based on the datamining roadmap, nonexperts can determine procedures and techniques for datamining in their applications.
The Transactions of the Korean Institute of Electrical Engineers P
/
v.64
no.2
/
pp.74-78
/
2015
With the improvement of living standards and economic development, electricity consumption continues to grow. The electricity is a special energy which is hard to store, so its supply must be consistent with the demand. The objective of electricity demand forecasting is to make best use of electricity energy and provide balance between supply and demand. Hence, it is very important work to forecast electricity demand with higher precision. So, various forecasting methods have been developed. They can be divided into five broad categories such as time series models, regression based model, artificial intelligence techniques and fuzzy logic method without considering special-day effects. Electricity demand patterns on holidays can be often idiosyncratic and cause significant forecasting errors. Such effects are known as special-day effects and are recognized as an important issue in determining electricity demand data. In this research, we developed the power demand forecasting method using ELM(Extreme Learning Machine) for special day, particularly, lunar new year and Chuseok holiday.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.12
no.3
/
pp.250-255
/
2012
Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.