• Title/Summary/Keyword: fuzzy logic Inference system

Search Result 196, Processing Time 0.03 seconds

Image Contrast Enhancement by Illumination Change Detection (조명 변화 감지에 의한 영상 콘트라스트 개선)

  • Odgerel, Bayanmunkh;Lee, Chang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • There are many image processing based algorithms and applications that fail when illumination change occurs. Therefore, the illumination change has to be detected then the illumination change occurred images need to be enhanced in order to keep the appropriate algorithm processing in a reality. In this paper, a new method for detecting illumination changes efficiently in a real time by using local region information and fuzzy logic is introduced. The effective way for detecting illumination changes in lighting area and the edge of the area was selected to analyze the mean and variance of the histogram of each area and to reflect the changing trends on previous frame's mean and variance for each area of the histogram. The ways are used as an input. The changes of mean and variance make different patterns w hen illumination change occurs. Fuzzy rules were defined based on the patterns of the input for detecting illumination changes. Proposed method was tested with different dataset through the evaluation metrics; in particular, the specificity, recall and precision showed high rates. An automatic parameter selection method was proposed for contrast limited adaptive histogram equalization method by using entropy of image through adaptive neural fuzzy inference system. The results showed that the contrast of images could be enhanced. The proposed algorithm is robust to detect global illumination change, and it is also computationally efficient in real applications.

Artificial Intelligence based Threat Assessment Study of Uncertain Ground Targets (불확실 지상 표적의 인공지능 기반 위협도 평가 연구)

  • Jin, Seung-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.305-313
    • /
    • 2021
  • The upcoming warfare will be network-centric warfare with the acquiring and sharing of information on the battlefield through the connection of the entire weapon system. Therefore, the amount of information generated increases, but the technology of evaluating the information is insufficient. Threat assessment is a technology that supports a quick decision, but the information has many uncertainties and is difficult to apply to an advanced battlefield. This paper proposes a threat assessment based on artificial intelligence while removing the target uncertainty. The artificial intelligence system used was a fuzzy inference system and a multi-layer perceptron. The target was classified by inputting the unique characteristics of the target into the fuzzy inference system, and the classified target information was input into the multi-layer perceptron to calculate the appropriate threat value. The validity of the proposed technique was verified with the threat value calculated by inputting the uncertain target to the trained artificial neural network.

Local Control and Remote Optimization for CSTR Wastewater Treatment Systems (CSTR 하.폐수처리장의 국지 제어 및 원격 최적화 시스템)

  • Bae, Hyeon;Seo, Hyun-Yong;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.21-25
    • /
    • 2002
  • Activated sludge processes are widely used in biological wastewater treatment processes. The main motivation of this research is to develop an intelligent control strategy for activated sludge process (ASP). ASP is a complex and nonlinear dynamic system because of the characteristic of wastewater, the change in influent rate, weather conditions, and so on. The mathematical model of ASP also includes uncertainties which are ignored or not considered by process engineer or controller designer. The ASP model based on Matlab/Simulink is designed in this paper. The performance of the model is tested by IWA (International Water Association) and COST (European Cooperation in the filed of Scientific and Technical Research) data that include steady-state results during 14 days. In this paper, fuzzy logic control approach is applied to control the DO (dissolved oxygen) concentration. The fuzzy logic controller that includes two inputs and one output can adjust air flowrate. Also, this paper introduces the remote monitoring and control system that is applied for the CSTR (Continuously Stirred Tank Reactor) wastewater treatment system. The CSTR plant has a local control and the remote monitoring system which is contained communication parts which consist of LAN (Local Area Network) network and CDMA (Code Division Multiple Access) wireless module. Remote control and monitoring systems are constructed in the laboratory.

  • PDF

Design of PI-type Fuzzy Logic Controller for a Turbojet Engine of Unmanned Aircraft (무인 항공기용 터보 제트 엔진의 PI-구조 퍼지 추론 제어기 설계)

  • Jie, Min-Seok;Mo, Eun-Jong;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper we propose a turbojet engine controller of unmanned aircraft based on the Fuzzy-PI algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the PI-type fuzzy controller effectively controls the fuel flow input of the control system. The fuzzy inference rule made by the logarithm function of acceleration error improves the tracking error. Computer simulations applied to the linear model of a turbojet engine show that the proposed method has good tracking performance for the reference acceleration and deceleration commands.

  • PDF

S-FDS : a Smart Fire Detection System based on the Integration of Fuzzy Logic and Deep Learning (S-FDS : 퍼지로직과 딥러닝 통합 기반의 스마트 화재감지 시스템)

  • Jang, Jun-Yeong;Lee, Kang-Woon;Kim, Young-Jin;Kim, Won-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.50-58
    • /
    • 2017
  • Recently, some methods of converging heterogeneous fire sensor data have been proposed for effective fire detection, but the rule-based methods have low adaptability and accuracy, and the fuzzy inference methods suffer from detection speed and accuracy by lack of consideration for images. In addition, a few image-based deep learning methods were researched, but it was too difficult to rapidly recognize the fire event in absence of cameras or out of scope of a camera in practical situations. In this paper, we propose a novel fire detection system combining a deep learning algorithm based on CNN and fuzzy inference engine based on heterogeneous fire sensor data including temperature, humidity, gas, and smoke density. we show it is possible for the proposed system to rapidly detect fire by utilizing images and to decide fire in a reliable way by utilizing multi-sensor data. Also, we apply distributed computing architecture to fire detection algorithm in order to avoid concentration of computing power on a server and to enhance scalability as a result. Finally, we prove the performance of the system through two experiments by means of NIST's fire dynamics simulator in both cases of an explosively spreading fire and a gradually growing fire.

Design of Interval Type-2 Fuzzy Inference System and Its optimization Realized by PSO (Interval Type-2 퍼지 추론 시스템의 설계와 PSO를 이용한 최적화)

  • Ji, Kwang-Hee;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.251-252
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합에서는 다루기 어려운 언어적인 불확실성을 더욱 효과적으로 다룰 수 있다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 후반부를 1차 및 2차 함수식으로 나타내며 Mamdani 모델과 함께 가장 널리 사용되는 모델이다. 본 연구의 Interval Type-2 TSK FLS은 전반부에서 Type-2 퍼지 집합을 이용하고 후반부는 계수가 Type-1 퍼지집합인 1차식을 사용한다. 또한 전반부는 가우시안 형태의 Type-2 멤버쉽 함수를 사용하며, 오류역전파 학습알고리즘을 사용하여 파라미터들을 최적화 한다. 또한 학습에 앞서 PSO(Particle Swarm Optimization) 알고리즘을 사용하여 최적 학습률을 찾아 모델의 학습능력을 보다 효율적으로 한다. 본 논문에서는 Type-1과 Type-2 FLS의 성능을 가스로 공정 데이터를 적용하여 두 모델의 성능을 비교하고 노이즈를 추가한 데이터를 이용하여 노이즈에 대한 성능도 비교 분석한다.

  • PDF

Development of an Intelligent and Hybrid Scheme for Rapid INS Alignment

  • Huang, Yun-Wen;Chiang, Kai-Wei
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.115-120
    • /
    • 2006
  • This article propose a new idea of developing a hybrid scheme to achieve faster INS alignment with higher accuracy using a novel procedure to estimate the initial attitude angles that combines a Kalman filter and Adaptive Neuro-Fuzzy Inference System architecture. A tactical grade inertial measurement unit was applied to verify the performance of proposed scheme in this study. The preliminary results indicated the outstanding improvements in both time consumption for fine alignment process and accuracy of estimated attitude angles, especially in heading angles. In general, the improvement in terms of time consumption and the accuracy of estimated attitude estimated accuracy reached 80% and 70% respectively during alignment process after compensating the attitude angles estimated by an extended Kalman filter with 15 states using proposed approach. It is worth mentioned that the proposed approach can be implemented in general real time navigation applications.

  • PDF

A Study on the Performance Improvement of Fuzzy Controller Using Genetic Algorithm and Evolution Programming (유전알고리즘과 진화프로그램을 이용한 퍼지제어기의 성능 향상에 관한 연구)

  • 이상부;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.58-64
    • /
    • 1997
  • FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the intialized value is excellent. In case an unknown process or the mathematical modeling of a complicated system is impossible, a fit control quantity can be acquired by the Fuzzy inference. But FLC can not converge correctly to the desirable value because the FLC's output value by the size of the quantization level of the Fuzzy variable always has a minor error. There are many ways to eliminate the minor error, but I will suggest GA-FLC and EP-FLC Hybrid controller which csombines FLC with GA(Genetic Algorithm) and EP(Evo1ution Programming). In this paper, the output characteristics of this Hybrid controller will be compared and analyzed with those of FLC, it will he showed that this Hybrid controller converge correctly to the desirable value without any error, and !he convergence speed performance of these two kinds of Hyhrid controller also will be compared.

  • PDF

Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control

  • Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.445-458
    • /
    • 2022
  • Some of the control systems used in engineering structures that use sensors and decision systems have some time delay reducing efficiency of the control system or even might make it unstable. In this research, in addition to considering the effect of the time delay in vibration control process, predictive control is used to compensate the time delay. A semi-active vibration control approach with the help of magneto-rheological dampers is implemented. In addition to using fuzzy inference system to determine the appropriate control voltage for MR damper, structural behavior prediction system and specifying future responses are also used such that the time delays occurring within control process are overcome. For this purpose, determination of prediction horizon is conducted for one, five, and ten steps ahead for single degree of freedom structures with periods ranging from 0.1 to 4 seconds, subjected to twenty earthquake excitations. The amount of time delay applied to the control system is 0.1 seconds. The obtained results indicate that for 0.1 second time delay, average prediction error values compared to the case without time delay is 3.47 percent. Having 0.1 second time delay in a semi-active control system reduces its efficiency by 11.46 percent; while after providing the control system with structure behavior prediction, the difference in the results for the control system without time delay is just 1.35 percent on average; indicating a 10.11 percent performance improvement for the control system.

Consideration of a Robust Search Methodology that could be used in Full-Text Information Retrieval Systems (퍼지 논리를 이용한 사용자 중심적인 Full-Text 검색방법에 관한 연구)

  • Lee, Won-Bu
    • Asia pacific journal of information systems
    • /
    • v.1 no.1
    • /
    • pp.87-101
    • /
    • 1991
  • The primary purpose of this study was to investigate a robust search methodology that could be used in full-text information retrieval systems. A robust search methodology is one that can be easily used by a variety of users (particularly naive users) and it will give them comparable search performance regardless of their different expertise or interests In order to develop a possibly robust search methodology, a fully functional prototype of a fuzzy knowledge based information retrieval system was developed. Also, an experiment that used this prototype information retreival system was designed to investigate the performance of that search methodology over a small exploratory sample of user queries To probe the relatonships between the possibly robust search performance and the query organization using fuzzy inference logic, the search performance of a shallow query structure was analyzes. Consequently the following several noteworthy findings were obtained: 1) the hierachical(tree type) query structure might be a better query organization than the linear type query structure 2) comparing with the complex tree query structure, the simple tree query structure that has at most three levels of query might provide better search performance 3) the fuzzy search methodology that employs a proper levels of cut-off value might provide more efficient search performance than the boolean search methodology. Even though findings could not be statistically verified because the experiments were done using a single replication, it is worth noting however, that the research findings provided valuable information for developing a possibly robust search methodology in full-text information retrieval.

  • PDF