• Title/Summary/Keyword: fuzzy logic Inference system

Search Result 196, Processing Time 0.025 seconds

Study of Discharge in Point-Plane Air Interval Using Fuzzy Logic

  • Bourek, Yacine;Mokhnache, Leila;Nait Said, Nacereddine;Kattan, Rafik
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.410-417
    • /
    • 2009
  • The objective of this paper is to study the discharge phenomenon for a point-plane air interval using an original fuzzy logic system. Firstly, a physical model based on streamer theory with consideration of the space charge fields due to electrons and positive ions is proposed. To test this model we have calculated the breakdown threshold voltage for a point-plane air interval. The same model is used to determine the discharge steps for different configurations as an inference data base. Secondly, using results obtained by the numerical simulation of the previous model, we have introduced the fuzzy logic technique to predict the breakdown threshold voltage of the same configurations used in the numerical model and make estimation on the insulating state of the air interval. From the comparison of obtained results, we can conclude that they are in accordance with the experimental ones obtained for breakdown discharges in different point-plane air gaps collected from the literature. The proposed study using fuzzy logic technique shows a good performance in the analysis of different discharge steps of the air interval.

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

A Study of Cluster Head Election of TEEN applying the Fuzzy Inference System

  • Song, Young-il;Jung, Kye-Dong;Lee, Seong Ro;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.66-72
    • /
    • 2016
  • In this paper, we proposed the clustering algorithm using fuzzy inference system for improving adaptability the cluster head selection of TEEN. The stochastic selection method cannot guarantee available of cluster head. Furthermore, because the formation of clusters is not optimized, the network lifetime is impeded. To improve this problem, we propose the algorithm that gathers attributes of sensor node to evaluate probability to be cluster head.

An Optimized Multiple Fuzzy Membership Functions based Image Contrast Enhancement Technique

  • Mamoria, Pushpa;Raj, Deepa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1205-1223
    • /
    • 2018
  • Image enhancement is an emerging method for analyzing the images clearer for interpretation and analysis in the spatial domain. The goal of image enhancement is to serve an input image so that the resultant image is more suited to the particular application. In this paper, a novel method is proposed based on Mamdani fuzzy inference system (FIS) using multiple fuzzy membership functions. It is observed that the shape of membership function while converting the input image into the fuzzy domain is the essential important selection. Then, a set of fuzzy If-Then rule base in fuzzy domain gives the best result in image contrast enhancement. Based on a different combination of membership function shapes, a best predictive solution can be determined which can be suitable for different types of the input image as per application requirements. Our result analysis shows that the quality attributes such as PSNR, Index of Fuzziness (IOF) parameters give different performances with a selection of numbers and different sized membership function in the fuzzy domain. To get more insight, an optimization algorithm is proposed to identify the best combination of the fuzzy membership function for best image contrast enhancement.

Speech Recognition of Multi-Syllable Words Using Soft Computing Techniques (소프트컴퓨팅 기법을 이용한 다음절 단어의 음성인식)

  • Lee, Jong-Soo;Yoon, Ji-Won
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • The performance of the speech recognition mainly depends on uncertain factors such as speaker's conditions and environmental effects. The present study deals with the speech recognition of a number of multi-syllable isolated Korean words using soft computing techniques such as back-propagation neural network, fuzzy inference system, and fuzzy neural network. Feature patterns for the speech recognition are analyzed with 12th order thirty frames that are normalized by the linear predictive coding and Cepstrums. Using four models of speech recognizer, actual experiments for both single-speakers and multiple-speakers are conducted. Through this study, the recognizers of combined fuzzy logic and back-propagation neural network and fuzzy neural network show the better performance in identifying the speech recognition.

Automated Prioritization of Construction Project Requirements using Machine Learning and Fuzzy Logic System

  • Hassan, Fahad ul;Le, Tuyen;Le, Chau;Shrestha, K. Joseph
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.304-311
    • /
    • 2022
  • Construction inspection is a crucial stage that ensures that all contractual requirements of a construction project are verified. The construction inspection capabilities among state highway agencies have been greatly affected due to budget reduction. As a result, efficient inspection practices such as risk-based inspection are required to optimize the use of limited resources without compromising inspection quality. Automated prioritization of textual requirements according to their criticality would be extremely helpful since contractual requirements are typically presented in an unstructured natural language in voluminous text documents. The current study introduces a novel model for predicting the risk level of requirements using machine learning (ML) algorithms. The ML algorithms tested in this study included naïve Bayes, support vector machines, logistic regression, and random forest. The training data includes sequences of requirement texts which were labeled with risk levels (such as very low, low, medium, high, very high) using the fuzzy logic systems. The fuzzy model treats the three risk factors (severity, probability, detectability) as fuzzy input variables, and implements the fuzzy inference rules to determine the labels of requirements. The performance of the model was examined on labeled dataset created by fuzzy inference rules and three different membership functions. The developed requirement risk prediction model yielded a precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, respectively. The proposed model is expected to provide construction inspectors with a means for the automated prioritization of voluminous requirements by their importance, thus help to maximize the effectiveness of inspection activities under resource constraints.

  • PDF

Automatic Log-in System by the Speaker Certification

  • Sohn, Young-Sun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.176-181
    • /
    • 2004
  • This paper introduces a Web site login system that uses user's native voice to improve the bother of remembering the ID and password in order to login the Web site. The DTW method that applies fuzzy inference is used as the speaker recognition algorithm. We get the ACC(Average Cepstrum Coefficient) membership function by each degree, by using the LPC that models the vocal chords, to block the recorded voice that is problem for the speaker recognition. We infer the existence of the recorded voice by setting on the basis of the number of zeros that is the value of the ACC membership function, and on the basis of the average value of the ACC membership function. We experiment the six Web sites for the six subjects and get the result that protects the recorded voice about 98% that is recorded by the digital recorder.

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

Fuzzy Inference Based Collision Free Navigation of a Mobile Robot using Sensor Fusion (퍼지추론기반 센서융합 이동로봇의 장애물 회피 주행기법)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • This paper presents a collision free mobile robot navigation based on the fuzzy inference fusion model in unkonown environments using multi-ultrasonic sensor. Six ultrasonic sensors are used for the collision avoidance approach where CCD camera sensors is used for the trajectory following approach. The fuzzy system is composed of three inputs which are the six distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and three cost functions for the robot's movement, direction, obstacle avoidance, and rotation. For the evaluation of the proposed algorithm, we performed real experiments with mobile robot with ultrasonic sensors. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.