• Title/Summary/Keyword: fuzzy learning

Search Result 982, Processing Time 0.018 seconds

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.

Strategic Issues in Managing Complexity in NPD Projects (신제품개발 과정의 복잡성에 대한 주요 연구과제)

  • Kim, Jongbae
    • Asia Marketing Journal
    • /
    • v.7 no.3
    • /
    • pp.53-76
    • /
    • 2005
  • With rapid technological and market change, new product development (NPD) complexity is a significant issue that organizations continually face in their development projects. There are numerous factors, which cause development projects to become increasingly costly & complex. A product is more likely to be successfully developed and marketed when the complexity inherent in NPD projects is clearly understood and carefully managed. Based upon the previous studies, this study examines the nature and importance of complexity in developing new products and then identifies several issues in managing complexity. Issues considered include: definition of complexity : consequences of complexity; and methods for managing complexity in NPD projects. To achieve high performance in managing complexity in development projects, these issues need to be addressed, for example: A. Complexity inherent in NPD projects is multi-faceted and multidimensional. What factors need to be considered in defining and/or measuring complexity in a development project? For example, is it sufficient if complexity is defined only from a technological perspective, or is it more desirable to consider the entire array of complexity sources which NPD teams with different functions (e.g., marketing, R&D, manufacturing, etc.) face in the development process? Moreover, is it sufficient if complexity is measured only once during a development project, or is it more effective and useful to trace complexity changes over the entire development life cycle? B. Complexity inherent in a project can have negative as well as positive influences on NPD performance. Thus, which complexity impacts are usually considered negative and which are positive? Project complexity also can affect the entire organization. Any complexity could be better assessed in broader and longer perspective. What are some ways in which the long-term impact of complexity on an organization can be assessed and managed? C. Based upon previous studies, several approaches for managing complexity are derived. What are the weaknesses & strengths of each approach? Is there a desirable hierarchy or order among these approaches when more than one approach is used? Are there differences in the outcomes according to industry and product types (incremental or radical)? Answers to these and other questions can help organizations effectively manage the complexity inherent in most development projects. Complexity is worthy of additional attention from researchers and practitioners alike. Large-scale empirical investigations, jointly conducted by researchers and practitioners, will help gain useful insights into understanding and managing complexity. Those organizations that can accurately identify, assess, and manage the complexity inherent in projects are likely to gain important competitive advantages.

  • PDF