• Title/Summary/Keyword: fuzzy learning

Search Result 982, Processing Time 0.028 seconds

ABR Traffic Control Using Fuzzy Logic in ATM Networks (퍼지 로직을 이용한 ATM 망의 ABR 트래픽 제어)

  • 오석용;박동조
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.105-110
    • /
    • 1998
  • 본 논문에서는 퍼지 로직을 이용하여 ATM 망의 ABR(Available Bit Rate) 트래픽 제어를 위한 효과적이고, 안정적인 피드백 제어 알고리즘을 제안한다. 기존 알고리즘들의 단점을 보완하면서, 망 내의 상황이 변하더라도 자가 학습 기능(self-learning capability)을 이용하여 파라미터 값들을 상황에 맞게 변화시키는 퍼지 로직을 이용한 새로운 제어알고리즘을 제안한다. 제안된 알고리즘은 Projection algorithm을 이용하여, 과거의 데이터로부터 다음 순간의 ABR 버퍼의 크기를 예측하며 퍼지 제어기의 출력 함수 파라미터들은 성능함수를 최소화하도록 학습된다. 제안된 알고리즘은 안정성(stability)이 보장되며, Upstream bottleneck 환경등의 특수하고, 제한된 상태에서도, 요구되는 QoS와 max-min fairness가 만족되고, 링트 효율을 극대화 할 수 있음을 시뮬레이션을 통하여 입증한다.

  • PDF

Fault Detection Relaying for Transmission line Protection using ANFIS (적응형 퍼지 시스템에 의한 송전선로보호의 고장검출 계전기법)

  • 전병준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.538-544
    • /
    • 1999
  • In this paper, we propose a new fault detection algorithm for transmission line protection using ANFIS(Adaptive Network Fuzzy Inference System). The developed system consists of two subsystems: fault type classification, and fault location estimation. We use rms value, zero sequence component and positive sequence of current, and then using learning method of neural network, premise and consequent parameters are tuned properly. To prove the performance of the proposcd system, generated data by EMTP(Electr0- Magnetic Transient Program) sin~ulationi s used. It is shown that the proposed relaying classifies fault types accurately and advances fault location estimation.

  • PDF

Multiclass SVM Model with Order Information

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.331-334
    • /
    • 2006
  • Original Support Vsctor Machines (SVMs) by Vapnik were used for binary classification problems. Some researchers have tried to extend original SVM to multiclass classification. However, their studies have only focused on classifying samples into nominal categories. This study proposes a novel multiclass SVM model in order to handle ordinal multiple classes. Our suggested model may use less classifiers but predict more accurately because it utilizes additional hidden information, the order of the classes. To validate our model, we apply it to the real-world bond rating case. In this study, we compare the results of the model to those of statistical and typical machine learning techniques, and another multi class SVM algorithm. The result shows that proposed model may improve classification performance in comparison to other typical multiclass classification algorithms.

ART1-based Fuzzy Supervised Learning Algorithm (ART1 기반 퍼지 지도 학습 알고리즘)

  • Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.479-484
    • /
    • 2005
  • 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART1의 경계 변수의 설정에 따른 인식률이 저하되는 문제점을 개선하기 위해 ART1 알고리즘과 퍼지 단층 지도 학습 알고리즘을 결합한 ART1 기반 퍼지 지도 학습 알고리즘을 제안한다. 제안된 알고리즘은 가중치 조정에 승자 뉴런 방식을 도입하여 은닉층에 해당하는 클래스에 영향을 끼친 패턴들의 정보만 저장하게 하여 은닉층 노드로의 책임 분담에 의한 정체 현상이 일어날 가능성을 줄인다. 그리고 학습시간과 학습의 수렴성도 개선한다. 제안된 알고리즘의 학습 성능을 분석하기 위하여 주민등록번호 분류를 대상으로 실험한 결과, 제안된 방법이 기존의 신경망보다 경계 변수나 모멘트에 민감하지 않으며 학습 시간도 적게 소요되고 수렴성도 우수한 성능이 있음을 확인하였다.

  • PDF

The Motion-Based Video Segmentation for Low Bit Rate Transmission (저비트율 동영상 전송을 위한 움직임 기반 동영상 분할)

  • Lee, Beom-Ro;Jeong, Jin-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2838-2844
    • /
    • 1999
  • The motion-based video segmentation provides a powerful method of video compression, because it defines a region with similar motion, and it makes video compression system to more efficiently describe motion video. In this paper, we propose the Modified Fuzzy Competitive Learning Algorithm (MFCLA) to improve the traditional K-menas clustering algorithm to implement the motion-based video segmentation efficiently. The segmented region is described with the affine model, which consists of only six parameters. This affine model was calculated with optical flow, describing the movements of pixels by frames. This method could be applied in the low bit rate video transmission, such as video conferencing system.

  • PDF

Auto-tunning of a FLC using Neural Networks (신경망을 이용한 서보제어기의 자동조정)

  • Yeon, Jae-Kuen;Yum, Jin-Ho;Nam, Hyun-Do
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1034-1036
    • /
    • 1996
  • In this paper, an adaptive fuzzy logic controller is presented for auto-tunning of the scaling factors by using learning capability of neural networks. The proposed scheme consists of the FLC which includes the PI-type FLC and PD-type FLC in parallel form and the neural network which learns scale factors of FLC. Computer simulations were performed to illustrate the effectiveness of a proposed scheme. A proposed FLC controller was applied to the second order system and velocity control of the brushless DC motors. For the design of the FLC, tracking error, change of error, and acceleration error are selected as input variables of the FLC and three seal e factors were used in the parallel-type FLC. This scheme can be used to reduce the difficulty in the selection of the scale factors.

  • PDF

Position Control of DC Servo Motor Using Neural Network Controller (신경 회로망 제어기를 이용한 직류 서보 전동기의 위치제어)

  • Lee, Joon-Tark;Lee, Kwon-Soon;Lee, Sang-Seuk;Park, Cheul-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.241-243
    • /
    • 1993
  • In this paper, a class of neural-network controllers with two inputs of error and error change, is applied to the position control of D.C. servo system. The proposed controller is learned by error back-propagating error information to compensate the weighting value using its previous derivatives and to decrease exponentially a series of self learning coefficients. Through the simulations and implementations, the effectiveness and superiority to the conventional fuzzy controller is proved.

  • PDF

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • Kim, Yong-Su
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

Maximum Torque Control of SynRM Drive using LM-FNN Controller (LM-FNN 제어기를 이용한 SynRM 드라이브의 최대토크 제어)

  • Park, Byung-Sang;Choi, Jung-Sik;Park, Ki-Tae;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1011-1012
    • /
    • 2007
  • The paper is proposed maximum torque control of SynRM drive using learning mechanism-fuzzy neural network(LM-FNN) controlle. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ${^{i}}_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled LM-FNN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the LM-FNN controller.

  • PDF

Improving the Performance of Fuzzy Classification Using Membership Function Learning (소속 함수 학습을 이용한 퍼지 분류의 성능 개선)

  • 곽동헌;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.613-615
    • /
    • 2004
  • 수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만 퍼지 규칙을 이용하는 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점이 있다. 따라서 퍼지 규칙을 쉽게 이해하기 위해서는 가능한 퍼지 규칙의 수를 적게 유지하는 것이 필요하다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수골 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Plma, Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.

  • PDF