• Title/Summary/Keyword: fuzzy learning

Search Result 982, Processing Time 0.022 seconds

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

A Path-Tracking Control of Optically Guided AGV Using Neurofuzzy Approach (뉴로퍼지방식 광유도식 무인반송차의 경로추종 제어)

  • Im, Il-Seon;Heo, Uk-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.723-732
    • /
    • 2001
  • In this paper, the neurofuzzy controller of optically guided AGV is proposed to improve the path-tracking performance A differential steered AGV has front-side and rear-side optical sensors, which can identify the guiding path. Due to the discontinuity of measured data in optical sensors, optically guided AGVs break away easily from the guiding path and path-tracking performance is being degraded. Whenever the On/Off signals in the optical sensors are generated discontinuously, the motion errors can be measured and updated. After sensing, the variation of motion errors can be estimated continuously by the dead reckoning method according to left/right wheel angular velocity. We define the estimated contour error as the sum of the measured contour in the sensing error and the estimated variation of contour error after sensing. The neurofuzzy system consists of incorporating fuzzy controller and neural network. The center and width of fuzzy membership functions are adaptively adjusted by back-propagation learning to minimize th estimated contour error. The proposed control system can be compared with the traditional fuzzy control and decision system in their network structure and learning ability. The proposed control strategy is experience through simulated model to check the performance.

  • PDF

A Study of Prediction of Daily Water Supply Usion ANFIS (ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구)

  • Rhee, Kyoung-Hoon;Moon, Byoung-Seok;Kang, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.821-832
    • /
    • 1998
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. Fuzzy neuron, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an adaptive learning method by which a membership function and fuzzy rules were adapted for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water supplied to the city of Kwangju. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supplied (b) the mean temperature, and (c)the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.35% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Adaptive group of ink drop spread: a computer code to unfold neutron noise sources in reactor cores

  • Hosseini, Seyed Abolfazl;Afrakoti, Iman Esmaili Paeen
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1369-1378
    • /
    • 2017
  • The present paper reports the development of a computational code based on the Adaptive Group of Ink Drop Spread (AGIDS) for reconstruction of the neutron noise sources in reactor cores. AGIDS algorithm was developed as a fuzzy inference system based on the active learning method. The main idea of the active learning method is to break a multiple input-single output system into a single input-single output system. This leads to the ability to simulate a large system with high accuracy. In the present study, vibrating absorber-type neutron noise source in an International Atomic Energy Agency-two dimensional reactor core is considered in neutron noise calculation. The neutron noise distribution in the detectors was calculated using the Galerkin finite element method. Linear approximation of the shape function in each triangle element was used in the Galerkin finite element method. Both the real and imaginary parts of the calculated neutron distribution of the detectors were considered input data in the developed computational code based on AGIDS. The output of the computational code is the strength, frequency, and position (X and Y coordinates) of the neutron noise sources. The calculated fraction of variance unexplained error for output parameters including strength, frequency, and X and Y coordinates of the considered neutron noise sources were $0.002682{\sharp}/cm^3s$, 0.002682 Hz, and 0.004254 cm and 0.006140 cm, respectively.

Advanced performance evaluation system for existing concrete bridges

  • Miyamoto, Ayaho;Emoto, Hisao;Asano, Hiroyoshi
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.727-743
    • /
    • 2014
  • The management of existing concrete bridges has become a major social concern in many developed countries due to the large number of bridges exhibiting signs of significant deterioration. This problem has increased the demand for effective maintenance and renewal planning. In order to implement an appropriate management procedure for a structure, a wide array of corrective strategies must be evaluated with respect to not only the condition state of each defect but also safety, economy and sustainability. This paper describes a new performance evaluation system for existing concrete bridges. The system evaluates performance based on load carrying capability and durability from the results of a visual inspection and specification data, and describes the necessity of maintenance. It categorizes all girders and slabs as either unsafe, severe deterioration, moderate deterioration, mild deterioration, or safe. The technique employs an expert system with an appropriate knowledge base in the evaluation. A characteristic feature of the system is the use of neural networks to evaluate the performance and facilitate refinement of the knowledge base. The neural network proposed in the present study has the capability to prevent an inference process and knowledge base from becoming a black box. It is very important that the system is capable of detailing how the performance is calculated since the road network represents a huge investment. The effectiveness of the neural network and machine learning method is verified by comparing diagnostic results by bridge experts.

Emotion Recognition Method for Driver Services

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.256-261
    • /
    • 2007
  • Electroencephalographic(EEG) is used to record activities of human brain in the area of psychology for many years. As technology developed, neural basis of functional areas of emotion processing is revealed gradually. So we measure fundamental areas of human brain that controls emotion of human by using EEG. Hands gestures such as shaking and head gesture such as nodding are often used as human body languages for communication with each other, and their recognition is important that it is a useful communication medium between human and computers. Research methods about gesture recognition are used of computer vision. Many researchers study Emotion Recognition method which uses one of EEG signals and Gestures in the existing research. In this paper, we use together EEG signals and Gestures for Emotion Recognition of human. And we select the driver emotion as a specific target. The experimental result shows that using of both EEG signals and gestures gets high recognition rates better than using EEG signals or gestures. Both EEG signals and gestures use Interactive Feature Selection(IFS) for the feature selection whose method is based on the reinforcement learning.

Automatic Assembly Task of Electric Line Using 6-Link Electro-Hydraulic Manipulators

  • Kyoungkwan Ahn;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1633-1642
    • /
    • 2002
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of the typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (linear vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN is generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.

An integrate information technology model during earthquake dynamics

  • Chen, Chen-Yuan;Chen, Ying-Hsiu;Yu, Shang-En;Chen, Yi-Wen;Li, Chien-Chung
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.633-647
    • /
    • 2012
  • Applying Information Technology (IT) in practical engineering has become one of the most important issues in the past few decades, especially on internal solitary wave, intelligent robot interaction, artificial intelligence, fuzzy Lyapunov, tension leg platform (TLP), consumer and service quality. Other than affecting the traditional teaching mode or increasing the inter-relation with users, IT can also be connected with the current society by collecting the latest information from the internet. It is apparently a fashion-catching-up technology. Therefore, the learning of how to use IT facilities is becoming one of engineers' skills nowadays. In addition to studying how well engineers learn to operate IT facilities and apply them into teaching, how engineers' general capacity of information effects the results of learning IT are also discussed. This research introduces the "Combined TAM and TPB mode," to understand the situation of engineers using IT facilities.

Strategy of Object Search for Distributed Autonomous Robotic Systems

  • Kim Ho-Duck;Yoon Han-Ul;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.264-269
    • /
    • 2006
  • This paper presents the strategy for searching a hidden object in an unknown area for using by multiple distributed autonomous robotic systems (DARS). To search the target in Markovian space, DARS should recognize th ε ir surrounding at where they are located and generate some rules to act upon by themselves. First of all, DARS obtain 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to research for a target object while navigating in a un known hallway where some obstacles were placed. In the end of this paper, we present the results of three algorithms - a random search, an area-based action making process to determine the next action of the robot and hexagon-based Q-learning to enhance the area-based action making process.