• Title/Summary/Keyword: fuzzy learning

Search Result 982, Processing Time 0.032 seconds

An Adaptive Evaluation System Using Fuzzy Reasoning Rule (퍼지추론규칙을 이용한 적응형 평가시스템)

  • Um, Myoung-Yong;Jung, Soon-Young;Lee, Won-Gyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.95-113
    • /
    • 2003
  • We introduce an AFES(Adaptive Fuzzy Evaluation System) that applies an evaluation system used to existing LCMS(Learning Contents Management System) to a fuzzy reasoning rule. The AFES confers a course level on the learner through a fuzzy diagnostic evaluation before the learner enters a learning course. After the learner completes a learning course through the tailored learning path that is suitable for the learner's level, the AFES confers a final grade on the learner by means of fuzzy final evaluation. The biggest characteristic of the AFES is a grade rule of the final grade. Although different learners get the same number of correct answers to the same number of Questions, AFES flexibly confers the different final grade on the learner by means of the number of 125's fuzzy reasoning rules.

  • PDF

Design of FLC using the Membership function modification algorithm and ANFIS (소속함수 수정 알고리즘과 ANFIS를 이용한 퍼지논리 제어기의 설계)

  • 최완규;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.43-46
    • /
    • 2001
  • We, in this paper, design the Sugeno-models fuzzy controller by using the membership function modification algorithm and ANFIS, which are clustering and learning the input-output data. The membership function modification algorithm constructs the more concrete fuzzy controller by clustering the input-output data from the fuzzy inference system. ANFIS construct the Sugeno-models fuzzy controller by learning the input-output data from the above controller. We showed that the fuzzy controller designed by our method could have the stable learning and the enhanced performance.

  • PDF

Learning Algorithms of Fuzzy Counterpropagation Networks

  • Jou, Chi-Cheng;Yih, Chi-Hsiao
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.977.1-1000
    • /
    • 1993
  • This paper presents a fuzzy neural network, called the fuzzy counterpropagation network, that structures its inputs and generates its outputs in a manner based on counterpropagation networks. The fuzzy counterpropagation network is developed by incorporating the concept of fuzzy clustering into the hidden layer responses. Three learning algorithms are introduced for use with the proposed network. Simulations demonstrate that fuzzy counterpropagation networks with the proposed learning algorithms work well on approximating bipolar and continuous functions.

  • PDF

Function Approximation for Reinforcement Learning using Fuzzy Clustering (퍼지 클러스터링을 이용한 강화학습의 함수근사)

  • Lee, Young-Ah;Jung, Kyoung-Sook;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.587-592
    • /
    • 2003
  • Many real world control problems have continuous states and actions. When the state space is continuous, the reinforcement learning problems involve very large state space and suffer from memory and time for learning all individual state-action values. These problems need function approximators that reason action about new state from previously experienced states. We introduce Fuzzy Q-Map that is a function approximators for 1 - step Q-learning and is based on fuzzy clustering. Fuzzy Q-Map groups similar states and chooses an action and refers Q value according to membership degree. The centroid and Q value of winner cluster is updated using membership degree and TD(Temporal Difference) error. We applied Fuzzy Q-Map to the mountain car problem and acquired accelerated learning speed.

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF

Fuzzy Inductive Learning System for Learning Preference of the User's Behavior Pattern (사용자 행동 패턴 선호도 학습을 위한 퍼지 귀납 학습 시스템)

  • Lee Hyong-Euk;Kim Yong-Hwi;Park Kwang-Hyun;Kim Yong-Su;June Jin-Woo;Cho Joonmyun;Kim MinGyoung;Bien Z. Zenn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.805-812
    • /
    • 2005
  • Smart home is one of the ubiquitous environment platforms with various complex sensor-and-control network. In this paper, a now learning methodology for learning user's behavior preference pattern is proposed in the sense of reductive user's cognitive load to access complex interfaces and providing personalized services. We propose a fuzzy inductive learning methodology based on life-long learning paradigm for knowledge discovery, which tries to construct efficient fuzzy partition for each input space and to extract fuzzy association rules from the numerical data pattern.

Optimal Control of Induction Motor Using Immune Algorithm Based Fuzzy Neural Network

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1296-1301
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy -neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

An Immune-Fuzzy Neural Network For Dynamic System

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.303-308
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

Tuning Fuzzy Rules Based on Additive-Type Fuzzy System Models

  • Shi, Yan;Mizumoto, Masaharu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.387-390
    • /
    • 1998
  • In this paper, we suggested a neuro-fuzzy learning algorithm for tuning fuzzy rules, in which a fuzzy system model is of additive-type. Using the method, it is possible to reduce the computation size, since performing the fuzzy inference and tuning the fuzzy rules of each fuzzy subsystem model are independent. Moreover, the efficiency of suggested method is shown by means of a numerical example.

  • PDF

Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System (학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링)

  • Park, Gwi-Tae;Kim, Dong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.