• Title/Summary/Keyword: fuzzy learning

Search Result 982, Processing Time 0.022 seconds

A study on Induction Motor Servo System using Self-learning Neural-Fuzzy Networks (자기학습형 뉴럴-퍼지 제어기에 의한 유도전동기 서어보시스템)

  • Yang, Seung-Ho;Kim, Se-Chan;Won, Chung-Yuen;Kim, Duk-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.142-144
    • /
    • 1993
  • In this study, a Self-learning Neural-Fuzzy Networks is presented, Because of the fuzzy controller property, the designing problems of fuzzy if-then rules, membership functions and inference methods are very complex task. Thus in this paper we proposed the Neural-Fuzzy Networks composed by Sugeno and Takagi's fuzzy inference method and learned by using temporal back propagation algorithm. The proposed method can refine automatically the fuzzy if-then rules without human expert's knowledges. The induction motor servo system is used to demonstrate the effectiveness of the proposed control scheme and the feasibility of the acquired fuzzy controller. All results are supported by simulation.

  • PDF

Learning of Fuzzy Membership Function by Novel Fuzzy-Neural Networks (새로운 퍼지-신경망을 이용한 퍼지소속함수의 학습)

  • 추연규;탁한호
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.2
    • /
    • pp.47-52
    • /
    • 1998
  • Recently , there have been considerable researches about the fusion of fuzzy logic and neural networks. The propose of thise researches is to combine the advantages of both. After the function of approximation using GMDP (Generalized Multi-Denderite Product)neural network for defuzzification operation of fuzzy controller, a new fuzzy-neural network is proposed. Fuzzy membership function of the proposed fuzzy-neural network can be adjusted by learning in order to be adaptive to the variations of a parameter or the external environment. To show the applicability of the proposed fuzzy-nerual network, the proposed model is applied to a speed control o fDC sevo motor. By the hardware implementation, we obtained the desriable results.

  • PDF

The position and Speed Control of a DC Servo-Motor Using Fuzzy-Neural Network Control System (퍼지-뉴럴 제어 시스템을 이용한 직류 서보 전동기의 위치 및 속도 제어)

  • Kang, Young-Ho;Jeong, Heon-Joo;Kim, Man-Cheol;Kim, Nak-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.244-247
    • /
    • 1993
  • In this paper, Fuzzy-Neural Network Control system that has the characteristic of fuzzy control to be controlled easily end the good characteristic of a artificial neural network to control the plant due to its learning is presented. A fuzzy rule to be applied is selected automatically by the allocated neurons. The neurons correspond to Fuzzy rules which ere created by a expert. To adaptivity, the more precise modeling is implemented by error beck-propagation learning of adjusting the link-weight of fuzzy membership function in Fuzzy-Neural Network. The more classified fuzzy rule is used to include the property of Dual Mode Method. To test the effectiveness of the algorithm presented above, the simulation for position end velocity of DC servo motor is implemented.

  • PDF

The Estimation of Link Travel Speed Using Hybrid Neuro-Fuzzy Networks (Hybrid Neuro-Fuzzy Network를 이용한 실시간 주행속도 추정)

  • Hwang, In-Shik;Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.306-314
    • /
    • 2000
  • In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.

  • PDF

A study of MIMO Fuzzy system with a Learning Ability (학습기능을 갖는 MIMO 퍼지시스템에 관한 연구)

  • Park, Jin-Hyun;Bae, Kang-Yul;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-513
    • /
    • 2009
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

Design of Fuzzy Pattern Classifier based on Extreme Learning Machine (Extreme Learning Machine 기반 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Sok-Beom;Hwang, Kuk-Yeon;Wang, Jihong;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.509-514
    • /
    • 2015
  • In this paper, we introduce a new pattern classifier which is based on the learning algorithm of Extreme Learning Machine the sort of artificial neural networks and fuzzy set theory which is well known as being robust to noise. The learning algorithm used in Extreme Learning Machine is faster than the conventional artificial neural networks. The key advantage of Extreme Learning Machine is the generalization ability for regression problem and classification problem. In order to evaluate the classification ability of the proposed pattern classifier, we make experiments with several machine learning data sets.

A Study on Reasoning and Learning of Fuzzy Rules Using Neural Networks (신경회로망을 이용한 퍼지룰의 추론과 학습에 관한 연구)

  • 이계호;임영철;김이곤;조경영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.2
    • /
    • pp.231-238
    • /
    • 1993
  • A rules of fuzzy control is to represent an expert‘s and engineer‘s ambiguous control knowledge of system with some lingustic rules. This rule is very difficult to represent perfectly because expert‘s knowledge is not precise and the rule is not perfect. We propose the fuzzy reasoning and learning to upgrade precision of imperfect rules successively after system running. In the proposed method, the precision of the backward part of a fuzzy rule is improved by back propagation learning method. Also, the method reasons the compatibility degree of the forward part of fuzzy rule by associative memory method. This method this is successfully applied to design auto-parking fuzzy controller in which expert‘s technology and knowledge are required in the limited area.

  • PDF

Z. Cao's Fuzzy Reasoning Method using Learning Ability (학습기능을 이용한 Z. Cao의 퍼지추론방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1591-1598
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. In this paper, we propose Z. Cao's fuzzy inference method with learning ability which is used a gradient descent method in order to improve the performances. It is hard to determine the relation matrix elements by trial and error method. Because this method is needed many hours and effort. Simulation results are applied nonlinear systems show that the proposed inference method using a gradient descent method has good performances.

Neuro-Fuzzy Controller Based on Reinforcement Learning (강화 학습에 기반한 뉴로-퍼지 제어기)

  • 박영철;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.395-400
    • /
    • 2000
  • In this paper, we propose a new neuro-fuzzy controller based on reinforcement learning. The proposed system is composed of neuro-fuzzy controller which decides the behaviors of an agent, and dynamic recurrent neural networks(DRNNs) which criticise the result of the behaviors. Neuro-fuzzy controller is learned by reinforcement learning. Also, DRNNs are evolved by genetic algorithms and make internal reinforcement signal based on external reinforcement signal from environments and internal states. This output(internal reinforcement signal) is used as a teaching signal of neuro-fuzzy controller and keeps the controller on learning. The proposed system will be applied to controller optimization and adaptation with unknown environment. In order to verifY the effectiveness of the proposed system, it is applied to collision avoidance of an autonomous mobile robot on computer simulation.

  • PDF

Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach (Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법)

  • Chu, Jun-Uk;Lee, Yun-Jung;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.