• Title/Summary/Keyword: fuzzy interacting multiple model algorithm

Search Result 20, Processing Time 0.019 seconds

A GA-Based IMM Method for Tracking a Maneuvering Target (기동표적 추적을 위한 유전 알고리즘 기반 상호작용 다중모델 기법)

  • Lee Bum-Jik;Joo Young-Hoon;Park Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.16-21
    • /
    • 2003
  • The accuracy in maneuvering target tracking using multiple models is resulted in by the suitability of each target motion model to be used. The interacting multiple model (IMM) method and the adaptive IMM (AIMM) method require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems, a genetic algorithm(GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to calculate the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulation.

Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model (퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyen;Lee, Heejin;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • For intelligent vehicle technology, it is very important to recognize the states of around vehicles and assess the collision risk for safety driving of the vehicle. Specifically, it is very fatal the collision with the vehicle coming from opposite direction. In this paper, a centerlane violation prediction method is proposed. Only radar signal based prediction makes lots of false alarm cause of measurement noise and the false alarm can make more danger situation than the non-prediction situation. We proposed the novel prediction method using IMM algorithm and fuzzy logic to increase accuracy and get rid of false positive. Fuzzy logic adjusts the radar signal and the IMM algorithm appropriately. It is verified by the computer simulation that shows stable prediction result and fewer number of false alarm.

Adaptive Fuzzy IMM Algorithm for Position Tracking of Maneuvering Target (기동표적의 위치추적을 위한 적응 퍼지 IMM 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.855-861
    • /
    • 2007
  • In real system application, the IMM-based position tracking algorithm requires robust performance, less computing resources and easy design procedure with respect to the uncertain target maneuvering, To solve these problems, an adaptive fuzzy interacting multiple model (AFIMM) algorithm, which is based on the well-defined basis sub-models and well-adjusted mode transition probabilities (MTPs), is proposed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application of the IMM-based position tracking algorithm.

Intelligent Tracking Algorithm for Maneuvering Target (지능형 추적 알고리즘)

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.499-501
    • /
    • 2005
  • When the target maneuver occurs, the estimate of the standard Kalman filter is biased and its performance may be seriously degraded. To solve this problem, this paper proposes a new intelligent estimation algorithm for a maneuvering target. This algorithm is to estimate the unknown target maneuver by a fuzzy system using the relation between the filter residual and its variation. The detected acceleration input is regarded as an additive process noise. To optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. And then, the modified filter is corrected by the new update equation method using the fuzzy system. The tracking performance of the proposed method is compared with those of an interacting multiple model (IMM).

  • PDF

A DNA Coding-Based Interacting Multiple Model Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 DNA 코딩 기반 상호작용 다중모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.87-91
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, a DNA coding-based interacting multiple model (DNA coding-based IMM) method is proposed. The proposed method can overcome the mathematical limits of conventional methods by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive IMM algorithm and the GA-based IMM method in computer simulations.

  • PDF

Maneuvering Target Tracking Using the IMM method Based on Intelligent Input Estimation (지능형 입력추정에 기반한 상호작용 다중모델 기법을 이용한 기동표적 추적)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2085-2087
    • /
    • 2003
  • A new interacting multiple model (IMM) method based on intelligent input estimation (IIE) is proposed for tracking a maneuvering target. In the proposed method, the acceleration level of each sub-filter is determined by IIE using the fuzzy system, which is optimized by the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method in computer simulations.

  • PDF

A Fuzzy-Neural network based IMM method for Tracking a Maneuvering Target (기동표적 추적을 위한 퍼지 뉴럴 네트워크 기반 다중모델 기법)

  • Son, Hyun-Seung;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1858-1859
    • /
    • 2006
  • This paper presents a new fuzzy-neural-network based interacting multiple model (FNNBIMM) algorithm for tracking a maneuvering target. To effectively handle the unknown target acceleration, this paper regards it as additional noise, time-varying variance to target model. Each sub model characterized by the variance of the overall process noise, which is obtained on the basis of each acceleration interval. Since it is hard to approximate this time-varying variance adaptively owing to the unknown acceleration, the FNN is utilized to precisely approximate this time-varying variance. The gradient descendant method is utilized to optimize each FNN. To show the feasibility of the proposed algorithm, a numerical example is provided.

  • PDF

A Fuzzy-Neural Network-Based IMM Method Tracking System (퍼지 뉴럴 네트워크 기반 다중모델 기법 추적 시스템)

  • Son Hyun-Seung;Joo Young-Hoon;Park Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.472-478
    • /
    • 2006
  • This paper presents a new fuzzy-neural-network based interacting multiple model (FNNBIMM) algorithm for tracking a maneuvering target. To effectively handle the unknown target acceleration, this paper regards it as additional noise, time-varying variance to target model. Each sub model characterized by the variance of the overall process noise, which is obtained on the basis of each acceleration interval. Since it is hard to approximate this time-varying variance adaptively owing to the unknown acceleration, the FNN is utilized to precisely approximate this time-varying variance. The error back-propagation method is utilized to optimize each FNN. To show the feasibility of the proposed algorithm, a numerical example is provided.

A DNA Coding-Based Interacting Multiple Model Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 DNA 코딩 기반 상호작용 다중모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.497-502
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, a DNA coding-based interacting multiple model (DNA coding-based W) method is proposed. The proposed method can overcome the mathematical limits of conventional methods by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive IMM algorithm and the GA-based IMM method in computer simulations.

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.