• Title/Summary/Keyword: fuzzy fault detector

Search Result 4, Processing Time 0.018 seconds

Development of Fuzzy Hybrid Redundancy for Sensor Fault-Tolerant of X-By-Wire System (X-By-Wire 시스템의 센서 결함 허용을 위한 Fuzzy Hybrid Redundancy 개발)

  • Kim, Man-Ho;Son, Byeong-Jeom;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The dependence of numerous systems on electronic devices is causing rapidly increasing concern over fault tolerance because of safety issues of safety critical system. As an example, a vehicle with electronics-controlled system such as x-by-wire systems, which are replacing rigid mechanical components with dynamically configurable electronic elements, should be fault¬tolerant because a devastating failure could arise without warning. Fault-tolerant systems have been studied in detail, mainly in the field of aeronautics. As an alternative to solve these problems, this paper presents the fuzzy hybrid redundancy system that can remove most erroneous faults with fuzzy fault detection algorithm. In addition, several numerical simulation results are given where the fuzzy hybrid redundancy outperforms with general voting method.

Detection of High Impedance Fault Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로 퍼지 추론 시스템을 이용한 고임피던스 고장검출)

  • 유창완
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.426-435
    • /
    • 1999
  • A high impedance fault(HIF) is one of the serious problems facing the electric utility industry today. Because of the high impedance of a downed conductor under some conditions these faults are not easily detected by over-current based protection devices and can cause fires and personal hazard. In this paper a new method for detection of HIF which uses adaptive neuro-fuzzy inference system (ANFIS) is proposed. Since arcing fault current shows different changes during high and low voltage portion of conductor voltage waveform we firstly divided one cycle of fault current into equal spanned four data windows according to the mangnitude of conductor voltage. Fast fourier transform(FFT) is applied to each data window and the frequency spectrum of current waveform are chosen asinputs of ANFIS after input selection method is preprocessed. Using staged fault and normal data ANFIS is trained to discriminate between normal and HIF status by hybrid learning algorithm. This algorithm adapted gradient descent and least square method and shows rapid convergence speed and improved convergence error. The proposed method represent good performance when applied to staged fault data and HIFLL(high impedance like load)such as arc-welder.

  • PDF

A Study on the Improvement of Fault Detection Capability for Fault Indicator using Fuzzy Clustering and Neural Network (퍼지클러스터링 기법과 신경회로망을 이용한 고장표시기의 고장검출 능력 개선에 관한 연구)

  • Hong, Dae-Seung;Yim, Hwa-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.374-379
    • /
    • 2007
  • This paper focuses on the improvement of fault detection algorithm in FRTU(feeder remote terminal unit) on the feeder of distribution power system. FRTU is applied to fault detection schemes for phase fault and ground fault. Especially, cold load pickup and inrush restraint functions distinguish the fault current from the normal load current. FRTU shows FI(Fault Indicator) when the fault current is over pickup value or inrush current. STFT(Short Time Fourier Transform) analysis provides the frequency and time Information. FCM(Fuzzy C-Mean clustering) algorithm extracts characteristics of harmonics. The neural network system as a fault detector was trained to distinguish the inruih current from the fault status by a gradient descent method. In this paper, fault detection is improved by using FCM and neural network. The result data were measured in actual 22.9kV distribution power system.

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF