• Title/Summary/Keyword: fuzzy evaluation model

Search Result 289, Processing Time 0.03 seconds

INTEGRAL METHODS OF FUZZY AHP AND DSM FOR EVALUATION IN PARTITIONING DESIGN TEAMS

  • Lou Y. Liang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1036-1046
    • /
    • 2009
  • Many construction activities are related because they share the information of working methods and resources. Generally, the design information for coupled activities needs to be constantly collaborated in the different teams. To achieve the improvement in team collaboration, it is necessary to identify the relative coupled activities in the design teams. The activity and work partitioning arrangements are also required to accommodate the appropriate team members. This paper presents an integral method to be an evaluation in improving the collaboration for teams partitioning. A model, Team Partitioning Method (TPM) was developed to clarify the relationships between activities in a team. The results show the applicability of TPM model in team partitioning for design collaboration.

  • PDF

Evaluation on the Procurement Logistics of Automobile Factories Based on the Fuzzy-AHP-TOPSIS (Fuzzy-AHP-TOPSIS를 활용한 자동차 공장의 조달물류 평가에 관한 연구)

  • Kim, Yeong-Geun;Oh, Jae-Gyeun;Park, Sung-hoon;Yeo, Gi-Tae
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.231-240
    • /
    • 2018
  • Automobile industry is facing a variety of risks, including the rise of international oil price and the increase of car prices. In addition to the government's deregulation, efforts should be made to improve management aiming at higher production efficiency. In this study, we established a model for evaluating the procurement logistics based on the Fuzzy-AHP-TOPSIS by using the factors that are actually used in real companies aimed at the improvement of procurement logistics. A total of three automobile factories of Company G were chosen as the evaluation subject. In the result of the Fuzzy-AHP analysis that was conducted on a sample of three car factories, solving the long-term quality problems, minimizing the stop time due to the shortage of materials, preventing the of equipment accident, and solving the short-term quality problems were proven to be the most important factors. TOPSIS analysis result indicated that Factory B had the best procurement logistics. Our study has significance that it can contribute to the improvement of efficiency in the automobile industry as the evaluation model suggested in this study can be used for regular evaluation related to the procurement logistics in the future.

Risk assessment of karst collapse using an integrated fuzzy analytic hierarchy process and grey relational analysis model

  • Ding, Hanghang;Wu, Qiang;Zhao, Dekang;Mu, Wenping;Yu, Shuai
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.515-525
    • /
    • 2019
  • A karst collapse, as a natural hazard, is totally different to a normal collapse. In recent years, karst collapses have caused substantial economic losses and even threatened human safety. A risk assessment model for karst collapse was developed based on the fuzzy analytic hierarchy process (FAHP) and grey relational analysis (GRA), which is a simple and effective mathematical algorithm. An evaluation index played an important role in the process of completing the risk assessment model. In this study, the proposed model was applied to Jiaobai village in southwest China. First, the main controlling factors were summarized as an evaluation index of the model based on an investigation and statistical analysis of the natural formation law of karst collapse. Second, the FAHP was used to determine the relative weights and GRA was used to calculate the grey relational coefficient among the indices. Finally, the relational sequence of evaluation objects was established by calculating the grey weighted relational degree. According to the maximum relational rule, the greater the relational degree the better the relational degree with the hierarchy set. The results showed that the model accurately simulated the field condition. It is also demonstrated the contribution of various control factors to the process of karst collapse and the degree of collapse in the study area.

Backward Reasoning in Fuzzy Petri - net Representation for Fuzzy Production Rules (퍼지생성규칙을 위한 퍼지페트리네트표현에서 후진추론)

  • Cho, Sang-Yeop
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.4
    • /
    • pp.951-958
    • /
    • 1998
  • In this paper, we propose a backward reasoning algorithm which can be utilized in the fuzzy Petri-net representation representing fuzzy production rules. The fuzzy Petri-net representation can be used to model a approximate reasoning system and implement a fuzzy inference engine. The proposed algorithm, which uses the proper belief evaluation functions according to fuzzy concepts in antecedentes and consequents of fuzzy production rules, is more closer to human intuition and reasoning than other methods. This algorithm generates the backward reasoning path from the goal to the initial nodes and evaluates the belief value of the goal node using belief evaluation functions.

  • PDF

Fuzzy Analytic Hierarchy Process for the Evaluation of Old Dwelling Façade Design Factor

  • Park, Jin-A
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • The purpose of this paper is to evaluate facade design factors of old dwellings using a Fuzzy Analytical Hierarchy Process (AHP) based on a pairwise comparison analysis using "Façade Design Factors" as evaluation criteria. Traditional old dwellings were presented and evaluated. A Fuzzy AHP based model was used for pairwise comparison of traditional old dwellings, whereby seven criteria and nine alternatives were described through a questionnaire and constructional data. The Fuzzy AHP was used to determine the impact of the facade design factors, because "Traditional" old dwellings are identified by the combination of their facade design factors. Furthermore, the fuzzy AHP is used to verify the feasibility and efficiency of this approach as well as for extent analysis to comprehend the priority of the traditional old dwellings using a sensibility measuring scale.

  • PDF

Computation of daily solar radiation using adaptive neuro-fuzzy inference system in Illinois

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.479-482
    • /
    • 2015
  • The objective of this study is to develop adaptive neuro-fuzzy inference system (ANFIS) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using ANFIS model. From the performance evaluation and scatter diagrams of ANFIS model, ANFIS 3 (three input) model produces the best results for both stations. Results obtained indicate that ANFIS model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of ANFIS model and its ability to produce accurate estimates in Illinois.

  • PDF

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

Recipe Prediction of Colorant Proportion for Target Color Reproduction (목표색상 재현을 위한 페인트 안료 배합비율의 예측)

  • Hwang, Kyu-Suk;Park, Chang-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.438-445
    • /
    • 2008
  • For recipe prediction of colorant proportion showing nonlinear behavior, we modeled the effects of colorant proportion of basic colors on the target colors and predicted colorant proportion necessary for making target colors. First, colorant proportion of basic colors and color information indicated by the instrument was applied by a linear model and a multi-layer perceptrons model with back-propagation learning method. However, satisfactory results were not obtained because of nonlinear property of colors. Thus, in this study the neuro-fuzzy model with merit of artificial neural networks and fuzzy systems was presented. The proposed model was trained with test data and colorant proportion was predicted. The effectiveness of the proposed model was verified by evaluation of color difference(${\Delta}E$).

Optimization of Fuzzy Neural Network based Nonlinear Process System Model using Genetic Algorithm (유전자 알고리즘을 이용한 FNNs 기반 비선형공정시스템 모델의 최적화)

  • 최재호;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.267-270
    • /
    • 1997
  • In this paper, we proposed an optimazation method using Genetic Algorithm for nonlinear system modeling. Fuzzy Neural Network(FNNs) was used as basic model of nonlinear system. FNNs was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, We used FNNs which was proposed by Yamakawa. The FNNs was composed Simple Inference and Error Back Propagation Algorithm. To obtain optimal model, parameter of membership function, learning rate and momentum coefficient of FNNs are tuned using genetic algorithm. And we used simplex algorithm additionaly to overcome limit of genetic algorithm. For the purpose of evaluation of proposed method, we applied proposed method to traffic choice process and waste water treatment process, and then obtained more precise model than other previous optimization methods and objective model.

  • PDF