International Journal of Fuzzy Logic and Intelligent Systems
/
제3권1호
/
pp.52-57
/
2003
In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.
Most of the edge detection methods available in literature are gradient based, which further apply thresholding, to find the final edge map in an image. In this paper, we propose a novel method that is based on fuzzy logic for edge detection in gray images without using the gradient and thresholding. Fuzzy logic is a mathematical logic that attempts to solve problems by assigning values to an imprecise spectrum of data in order to arrive at the most accurate conclusion possible. Here, the fuzzy logic is used to conclude whether a pixel is an edge pixel or not. The proposed technique begins by fuzzifying the gray values of a pixel into two fuzzy variables, namely the black and the white. Fuzzy rules are defined to find the edge pixels in the fuzzified image. The resultant edge map may contain some extraneous edges, which are further removed from the edge map by separately examining the intermediate intensity range pixels. Finally, the edge map is improved by finding some left out edge pixels by defining a new membership function for the pixels that have their entire 8-neighbourhood pixels classified as white. We have compared our proposed method with some of the existing standard edge detector operators that are available in the literature on image processing. The quantitative analysis of the proposed method is given in terms of entropy value.
Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.
이 논문에서는 디지털 영상의 퍼지 시스템 표현으로부터 유도된 Edge 검출 알고리듬에 대하여 기술한다. 이 알고리듬은 Gradient을 기반으로 한 것으로 Convolution Kernel이 기존의 Roberts, Prewitt 또는 Sobel등이 제안한 Gradient Kernel과 다른 새로운 것이다. 사용한 퍼지시스템은 디지털 영상을 근사적으로 표현한 Bicubic Spline 함수를 퍼지시스템 화한것으로서 2차 도함수가 연속이기 때문에 Gradient나 Laplacian 연산이 가능하다. Grid 점들에서 이 함수의 Gradient는 두 개의 축 방향으로 각각 한개의 3$\times$3행렬과 영상과의 Covolution에 의하여 산출됨을 보였으며 이를 이용하여 검출된 Edge들은 기존의 다른 방법을 사용하여 검출된 Edge 영상보다 훨씬 선명함을 확인하였다. 이 알고리듬 적용사례 2개에 대한 기술에 포함되어 있다.
본 논문에서는 영상의 에지 검출을 수행하기 위한 퍼지 규칙을 학습하는 퍼지 분류자 시스템을 제안한다. 퍼지 분류자 시스템은 기계학습의 방법을 퍼지 논리의 개념에 적용한 것이다. 즉 분류자의 조건부와 행동부는 퍼지 규칙에서위 전건부와 후건부와 같은 것이 된다 퍼지 규칙을 진화에 의해 획득하는 방법론으로는 크게 미시간 접근법과 피츠 접근법이 있으며, 본 논문에서는 미시간 방법의 퍼지 분류자 시스템을 사용한다. 미시간 접근방법은 하나의 퍼지 IF-THEN 규칙이 진화연산의 직접적인 진화 대상이 되는 하나의 개체로 코드화된다. 또한 퍼지 분류자 시스템은 유전 알고리즘을 사용하여 새로운 규칙을 생성하거나 규칙을 수정하여 시스템의 성능을 향상시킨다. 제안된 방법은 영상 처리와 컴퓨터 비전 분야에서 인식과 구분ㅇ르 수행하기 위한 전처리 단계에 해당하는 에지 검출에 적용하여 그 유효성을 검증한다. 즉, 영상엣 한 픽셀이 이웃하는 픽셀들의 평균 그렝 레벨의 차리를 퍼지 집합으로 표현하고 퍼지 IF-THEN 규칙을 사용하여 에지를 검출하고, 이것을 Sobel 에지 검출방법으로 얻어진 결과와 비교하여 에지 검출에 사용된 규칙의 유용성을 판단한다.
IEIE Transactions on Smart Processing and Computing
/
제3권6호
/
pp.345-352
/
2014
Edge detection considers the important technical details of digital image processing. Many edge detection operators already perform edge detection in digital color imaging. In this study, the edge of many real color images that represent the type of digital image was detected using a new operator in the least square approximation method, which is a type of numerical method. The Linear Fitting algorithm is computationally more expensive compared to the Canny, LoG, Sobel, Prewitt, HIS, Fuzzy, Parametric, Synthetic and Vector methods, and Robert' operators. The results showed that the new method can detect an edge in a digital color image with high efficiency compared to standard methods used for edge detection. In addition, the suggested operator is very useful for detecting the edge in a digital color image.
The purpose of this paper is to explore the use of fuzzy set theory for image processing and analysis. As an application example, the fuzzy method of edge detection is proposed to extract the edges of raised characters on tires.In general, Sobel, Prewitt, Robert and LoG filters are used to detect the edge, but it is difficult to detect the edge because of ambiguity of representations, noise and general problems in the interpretation of tire image. Therefore, in his paper, the fuzzy property plane has been extracted from the spatial domain using the ramp-mapping function. And then the ideas of fuzzy MIN and MAX are applied in removing noise and enhancement of the image simultaneously. From the result of MIN and MAX procedure a new fuzzy singleton is generated by extracting the difference between adjacent membership function values. And the edges are extracted by applying fuzzy $\alpha$-cut set to the fuzzy singletion, Finally, these ideas are applied to the tire images.
영상 인식에 있어 에지는 중요한 부분을 차지하고 있으며, 에지 검출 방법에 대하여 많은 연구가 진행되고 있다. 그럼에도 불구하고 에지는 응용분야에 따라 검출 범위가 달라 정확한 에지 검출은 여전히 어려운 문제로 남아 있다. 이러한 해결해야할 문제 중 하나가 잡음이 존재하는 영상에서의 에지 검출이다. 본 논문에서는 퍼지 논리를 기반으로 같은 구조 안에서 잡음을 제거하고 에지를 검출하는 방법을 제시하였다. 제안한 방법은 두 단계로 이루어졌으며 첫 번째는 필터링 작업으로 3${\times}$3 마스크를 수직, 수평, 대각의 3방향으로 단순화하고 퍼지의 MIN-MAX 연산자를 이용하여 평균을 구한 뒤, 평균값을 적용하여 잡음이 존재하는 원 영상으로부터 잡음제거를 실행하고, 두 번째로 확장된 퍼지의 샤논 함수를 이용하여 에지 검출을 실행하였다.
잡음을 지닌 영상에서 에지검출은 널리 알려진 문제이다. 본 논문에서는 그러한 문제를 풀기 위해 퍼지 멤버쉽 함수를 통한 퍼지추론을 이용하여 에지검출 알고리즘을 구현하였고 응용의 관점에서 방법을 고찰하였다. 구현된 에지검출 알고리즘은 필터링 과정, 단편 에지검출 과정, 추적 과정으로 나뉜다. 필터링은 윈 영상으로부터 잡음을 제거하는 과정이고, 단편 에지검출은 단편적인 에지를 결정하고 검출하는 과정이다. 마지막으로 에지추적 및 결합은 에지를 구조적인 것으로 결합한다. 이러한 각 단계에 퍼지 모델에 기반한 퍼지추론이 효율적으로 적용되었다. 이를 기존의 에지검출 알고리즘과 비교ㆍ검토하였다. 실험결과들은 본 논문에서 제안한 퍼지추론을 이용한 에지검출 알고리즘이 기존의 알고리즘에 비해, 검출 성능이 향상되었음을 입증하고 있다.
Based on fuzzy 2-mean classification and template matching method, we propose a new algorithm to detect the edges of an image. In the algorithm, fuzzy 2-mean classification can classify all pixels in the mask into two clusters whatever the mask in the dark or light region; and template matching not only determines the edge's direction, but also thins the detected edge by a set of inference rules and, by the way, reduces the impulse noises.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.