• 제목/요약/키워드: fuzzy edge detection

검색결과 51건 처리시간 0.024초

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.

Simple Fuzzy Rule Based Edge Detection

  • Verma, O.P.;Jain, Veni;Gumber, Rajni
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.575-591
    • /
    • 2013
  • Most of the edge detection methods available in literature are gradient based, which further apply thresholding, to find the final edge map in an image. In this paper, we propose a novel method that is based on fuzzy logic for edge detection in gray images without using the gradient and thresholding. Fuzzy logic is a mathematical logic that attempts to solve problems by assigning values to an imprecise spectrum of data in order to arrive at the most accurate conclusion possible. Here, the fuzzy logic is used to conclude whether a pixel is an edge pixel or not. The proposed technique begins by fuzzifying the gray values of a pixel into two fuzzy variables, namely the black and the white. Fuzzy rules are defined to find the edge pixels in the fuzzified image. The resultant edge map may contain some extraneous edges, which are further removed from the edge map by separately examining the intermediate intensity range pixels. Finally, the edge map is improved by finding some left out edge pixels by defining a new membership function for the pixels that have their entire 8-neighbourhood pixels classified as white. We have compared our proposed method with some of the existing standard edge detector operators that are available in the literature on image processing. The quantitative analysis of the proposed method is given in terms of entropy value.

An Edge Detection Method for Gray Scale Images Based on their Fuzzy System Representation

  • Moon, Byung-Soo;Lee, Hyun-Chul;Kim, Jang-Yeol
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.283-286
    • /
    • 2001
  • Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.

  • PDF

디지털 영상의 퍼지시스템 표현을 이용한 Edge 검출방법 (An edge detection method for gray scale images based on their fuzzy system representation)

  • 문병수;이현철;김장열
    • 한국지능시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.454-458
    • /
    • 2001
  • 이 논문에서는 디지털 영상의 퍼지 시스템 표현으로부터 유도된 Edge 검출 알고리듬에 대하여 기술한다. 이 알고리듬은 Gradient을 기반으로 한 것으로 Convolution Kernel이 기존의 Roberts, Prewitt 또는 Sobel등이 제안한 Gradient Kernel과 다른 새로운 것이다. 사용한 퍼지시스템은 디지털 영상을 근사적으로 표현한 Bicubic Spline 함수를 퍼지시스템 화한것으로서 2차 도함수가 연속이기 때문에 Gradient나 Laplacian 연산이 가능하다. Grid 점들에서 이 함수의 Gradient는 두 개의 축 방향으로 각각 한개의 3$\times$3행렬과 영상과의 Covolution에 의하여 산출됨을 보였으며 이를 이용하여 검출된 Edge들은 기존의 다른 방법을 사용하여 검출된 Edge 영상보다 훨씬 선명함을 확인하였다. 이 알고리듬 적용사례 2개에 대한 기술에 포함되어 있다.

  • PDF

퍼지 분류가 시스템을 이용한 영상의 에지 검출 규칙 학습 (Learning of Rules for Edge Detection of Image using Fuzzy Classifier System)

  • 정치선;반창봉;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.252-259
    • /
    • 2000
  • 본 논문에서는 영상의 에지 검출을 수행하기 위한 퍼지 규칙을 학습하는 퍼지 분류자 시스템을 제안한다. 퍼지 분류자 시스템은 기계학습의 방법을 퍼지 논리의 개념에 적용한 것이다. 즉 분류자의 조건부와 행동부는 퍼지 규칙에서위 전건부와 후건부와 같은 것이 된다 퍼지 규칙을 진화에 의해 획득하는 방법론으로는 크게 미시간 접근법과 피츠 접근법이 있으며, 본 논문에서는 미시간 방법의 퍼지 분류자 시스템을 사용한다. 미시간 접근방법은 하나의 퍼지 IF-THEN 규칙이 진화연산의 직접적인 진화 대상이 되는 하나의 개체로 코드화된다. 또한 퍼지 분류자 시스템은 유전 알고리즘을 사용하여 새로운 규칙을 생성하거나 규칙을 수정하여 시스템의 성능을 향상시킨다. 제안된 방법은 영상 처리와 컴퓨터 비전 분야에서 인식과 구분ㅇ르 수행하기 위한 전처리 단계에 해당하는 에지 검출에 적용하여 그 유효성을 검증한다. 즉, 영상엣 한 픽셀이 이웃하는 픽셀들의 평균 그렝 레벨의 차리를 퍼지 집합으로 표현하고 퍼지 IF-THEN 규칙을 사용하여 에지를 검출하고, 이것을 Sobel 에지 검출방법으로 얻어진 결과와 비교하여 에지 검출에 사용된 규칙의 유용성을 판단한다.

  • PDF

Detection of Edges in Color Images

  • Ganchimeg, Ganbold;Turbat, Renchin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권6호
    • /
    • pp.345-352
    • /
    • 2014
  • Edge detection considers the important technical details of digital image processing. Many edge detection operators already perform edge detection in digital color imaging. In this study, the edge of many real color images that represent the type of digital image was detected using a new operator in the least square approximation method, which is a type of numerical method. The Linear Fitting algorithm is computationally more expensive compared to the Canny, LoG, Sobel, Prewitt, HIS, Fuzzy, Parametric, Synthetic and Vector methods, and Robert' operators. The results showed that the new method can detect an edge in a digital color image with high efficiency compared to standard methods used for edge detection. In addition, the suggested operator is very useful for detecting the edge in a digital color image.

퍼지 $\alpha$ 컷 집합에 의한 고무 타이어 영상의 문자 윤관선 추출 (Edge Detection of Characters on the Rubber Tire Image Using Fuzzy $\alpha-Cut$ Set)

  • 김경민;박중조;박귀태
    • 전자공학회논문지B
    • /
    • 제31B권6호
    • /
    • pp.71-80
    • /
    • 1994
  • The purpose of this paper is to explore the use of fuzzy set theory for image processing and analysis. As an application example, the fuzzy method of edge detection is proposed to extract the edges of raised characters on tires.In general, Sobel, Prewitt, Robert and LoG filters are used to detect the edge, but it is difficult to detect the edge because of ambiguity of representations, noise and general problems in the interpretation of tire image. Therefore, in his paper, the fuzzy property plane has been extracted from the spatial domain using the ramp-mapping function. And then the ideas of fuzzy MIN and MAX are applied in removing noise and enhancement of the image simultaneously. From the result of MIN and MAX procedure a new fuzzy singleton is generated by extracting the difference between adjacent membership function values. And the edges are extracted by applying fuzzy $\alpha$-cut set to the fuzzy singletion, Finally, these ideas are applied to the tire images.

  • PDF

퍼지 논리를 이용한 잡음 제거 및 에지 검출 (Noise Elimination and Edge Detection based on Fuzzy Logic)

  • 이혜정;정성태;정석태
    • 한국정보통신학회논문지
    • /
    • 제7권3호
    • /
    • pp.506-512
    • /
    • 2003
  • 영상 인식에 있어 에지는 중요한 부분을 차지하고 있으며, 에지 검출 방법에 대하여 많은 연구가 진행되고 있다. 그럼에도 불구하고 에지는 응용분야에 따라 검출 범위가 달라 정확한 에지 검출은 여전히 어려운 문제로 남아 있다. 이러한 해결해야할 문제 중 하나가 잡음이 존재하는 영상에서의 에지 검출이다. 본 논문에서는 퍼지 논리를 기반으로 같은 구조 안에서 잡음을 제거하고 에지를 검출하는 방법을 제시하였다. 제안한 방법은 두 단계로 이루어졌으며 첫 번째는 필터링 작업으로 3${\times}$3 마스크를 수직, 수평, 대각의 3방향으로 단순화하고 퍼지의 MIN-MAX 연산자를 이용하여 평균을 구한 뒤, 평균값을 적용하여 잡음이 존재하는 원 영상으로부터 잡음제거를 실행하고, 두 번째로 확장된 퍼지의 샤논 함수를 이용하여 에지 검출을 실행하였다.

퍼지모델을 기반으로한 에지검출 알고리즘 구현에관한 연구 (A Studyon Implementation of Edge Detection Algorithms Based on fuzzy Membership Models)

  • 이배호;김소연;김광희
    • 한국정보처리학회논문지
    • /
    • 제5권9호
    • /
    • pp.2447-2456
    • /
    • 1998
  • 잡음을 지닌 영상에서 에지검출은 널리 알려진 문제이다. 본 논문에서는 그러한 문제를 풀기 위해 퍼지 멤버쉽 함수를 통한 퍼지추론을 이용하여 에지검출 알고리즘을 구현하였고 응용의 관점에서 방법을 고찰하였다. 구현된 에지검출 알고리즘은 필터링 과정, 단편 에지검출 과정, 추적 과정으로 나뉜다. 필터링은 윈 영상으로부터 잡음을 제거하는 과정이고, 단편 에지검출은 단편적인 에지를 결정하고 검출하는 과정이다. 마지막으로 에지추적 및 결합은 에지를 구조적인 것으로 결합한다. 이러한 각 단계에 퍼지 모델에 기반한 퍼지추론이 효율적으로 적용되었다. 이를 기존의 에지검출 알고리즘과 비교ㆍ검토하였다. 실험결과들은 본 논문에서 제안한 퍼지추론을 이용한 에지검출 알고리즘이 기존의 알고리즘에 비해, 검출 성능이 향상되었음을 입증하고 있다.

  • PDF

An Edge Detection Method by Using Fuzzy 2-Mean Classification and Template Matching

  • Kang, C.C.;Lee, P.J.;Wang, W.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1315-1318
    • /
    • 2004
  • Based on fuzzy 2-mean classification and template matching method, we propose a new algorithm to detect the edges of an image. In the algorithm, fuzzy 2-mean classification can classify all pixels in the mask into two clusters whatever the mask in the dark or light region; and template matching not only determines the edge's direction, but also thins the detected edge by a set of inference rules and, by the way, reduces the impulse noises.

  • PDF