• Title/Summary/Keyword: fuzzy dynamics

Search Result 308, Processing Time 0.034 seconds

A Fault Detection System Design for Boiler-Turbine Control System of Thermal Power Pant (화력발전소 보일러-터빈 제어시스템의 고장검출시스템 설계)

  • Yoo, Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.615-620
    • /
    • 2015
  • This paper deals with a fault detection system design for a boiler-turbine control system of thermal power plant. We described the nonlinear properties of the boiler-turbine dynamics as a T-S fuzzy system with time varying measurable parameters. We design a residual generator using an observer based fault detection filter. In order to identify the faulted output sensor, an approximate inverse system is connected to the outport of the fault detection filter. We demonstrate the efficiency of the suggested design method via computer simulations.

Application of Tabu Search in Design of Fuzzy Controller for Firing Angle of TCSC Improving Transient Stability (과도 안정도 향상을 위한 TCSC의 점호각 제어용 퍼지제어기의 설계에 Tabu 탐색법의 적용)

  • Kim, U-Geun;Hwang, Gi-Hyeon;Kim, Hyeong-Su;Park, Jun-Ho;Park, Jung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.12
    • /
    • pp.561-567
    • /
    • 2001
  • This paper describes the application of Fuzzy Logic Controller (FLC) to Thyristor Controlled Series Capacitor (TCSC) which can have significant impact on power system dynamics. The function of the FLC is to control the firing angle of the TCSC. We tuned the scaling factors of the FLC using Tabu Search. The proposed FLC is used for damping the low frequency oscillations caused by disturbances such as the sudden changes of small or large loads or the outages in the generators or transmission lines. To evaluate usefulness of the proposed FLC, we performed the computer simulation fur single-machine infinite system. The response of FLC is compared with that of PD controller optimized using Tabu Search. Simulation results that the FLC shows better control performance than PD controller.

  • PDF

Efficiency Optimization Control of SynRM with Hybrid Artificial Intelligent Controller (하이브리드 인공지능 제어기에 의한 SynRM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.321-326
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

T—S Fuzzy Model-based Sampled-data Observer Design for Detecting Internal Oil Leakage in Single-rod Hydraulic Cylinder: LMI Approach (편로드 유압실린더 내부 누유 검출을 위한 T—S 퍼지 모델 기반 샘플치 관측기 설계: LMI 접근법)

  • Jee, Sung Chul;Kim, Hyogon;Park, Jeongwoo;Lee, Mun-Jik;Kang, Hyungjoo;Li, Ji-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.405-414
    • /
    • 2016
  • This paper presents an internal oil leakage detection problem for a hydraulic single-rod cylinder. We derive the dynamics of the hydraulic cylinder as a state space model, and then design a T—S fuzzy model-based fault detection observer. We adopt an H observer design scheme so that the observer is robust against disturbance and relatively sensitive to the leakage fault. Sufficient design conditions are derived in the form of linear matrix inequalities. A numerical example is provided to verify the proposed techniques.

Dependence assessment in human reliability analysis under uncertain and dynamic situations

  • Gao, Xianghao;Su, Xiaoyan;Qian, Hong;Pan, Xiaolei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.948-958
    • /
    • 2022
  • Since reliability and security of man-machine system increasingly depend on reliability of human, human reliability analysis (HRA) has attracted a lot of attention in many fields especially in nuclear engineering. Dependence assessment among human tasks is a important part in HRA which contributes to an appropriate evaluation result. Most of methods in HRA are based on experts' opinions which are subjective and uncertain. Also, the dependence influencing factors are usually considered to be constant, which is unrealistic. In this paper, a new model based on Dempster-Shafer evidence theory (DSET) and fuzzy number is proposed to handle the dependence between two tasks in HRA under uncertain and dynamic situations. First, the dependence influencing factors are identified and the judgments on the factors are represented as basic belief assignments (BBAs). Second, the BBAs of the factors that varying with time are reconstructed based on the correction BBA derived from time value. Then, BBAs of all factors are combined to gain the fused BBA. Finally, conditional human error probability (CHEP) is derived based on the fused BBA. The proposed method can deal with uncertainties in the judgments and dynamics of the dependence influencing factors. A case study is illustrated to show the effectiveness and the flexibility of the proposed method.

An integrate information technology model during earthquake dynamics

  • Chen, Chen-Yuan;Chen, Ying-Hsiu;Yu, Shang-En;Chen, Yi-Wen;Li, Chien-Chung
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.633-647
    • /
    • 2012
  • Applying Information Technology (IT) in practical engineering has become one of the most important issues in the past few decades, especially on internal solitary wave, intelligent robot interaction, artificial intelligence, fuzzy Lyapunov, tension leg platform (TLP), consumer and service quality. Other than affecting the traditional teaching mode or increasing the inter-relation with users, IT can also be connected with the current society by collecting the latest information from the internet. It is apparently a fashion-catching-up technology. Therefore, the learning of how to use IT facilities is becoming one of engineers' skills nowadays. In addition to studying how well engineers learn to operate IT facilities and apply them into teaching, how engineers' general capacity of information effects the results of learning IT are also discussed. This research introduces the "Combined TAM and TPB mode," to understand the situation of engineers using IT facilities.

Efficiency Optimization Control of SynRM Drive with HAI Controller (HAI 제어기에 의한 SynRM 드라이브의 효율 최적화 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.98-106
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the cower and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and f-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

Design of the Fuzzy Logic Cross-Coupled Controller using a New Contouring Modeling (새로운 윤곽 모델링에 의한 퍼지논리형 상호결합제어기 설계)

  • Kim, Jin-Hwan;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • This paper proposes a fuzzy logic cross-coupled controller using a new contouring modeling for a two-axis servo system. The general decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties. The cross-coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However, the conventional cross-coupled controllers cannot overcome friction, backlash, and parameter variations. Also since, it is difficult to obtain an accurate mathematical model of multi-axis system, here we investigate a fuzzy logic cross-coupled controller of servo system. In addition, new contouring error vector computation method is presented. The experimental results are presented to illustrate the performance of the proposed algorithm.

  • PDF

Efficiency Optimization Control of SynRM with Hybrid Artificial Intelligent Controller (하이브리드 인공지능 제어기에 의한 SynRM의 효율 최적화 제어)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the coner and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

Fuzzy Modeling and Stability Analysis of Wind Power System with Doubly-fed Induction Generator (이중여자 유도발전기 기반 풍력발전 시스템의 퍼지 모델링 및 안정도 해석)

  • Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2012
  • This paper propose the robust stability algorithm for controlling a variable speed wind power system which based on doubly-fed induction generator (DFIG). The control object in the wind power system enables the rotor to rotate without any physical contact by using magnetic force. Generally, the system dynamics of the wind power system has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving these problems, we propose the fuzzy modelling and robust control algorithm for wind power system. The sufficient conditions for robust controller are obtained in terms of solutions to linear matrix inequalities (LMIs). Simulation results for wind power system based on DFIG are demonstrated to visualize the feasibility of the proposed method.