• Title/Summary/Keyword: fuzzy dynamics

Search Result 308, Processing Time 0.027 seconds

A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller (모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어)

  • Kim, Seung-Woo;Seo, Ki-Sung;Cho, Young-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.

Intelligent Control Algorithm for the Adjustment Process During Electronics Production (전자제품생산의 조정고정을 위한 지능형 제어알고리즘)

  • 장석호;구영모;고택범;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-457
    • /
    • 1998
  • A neural network based control algorithm with fuzzy compensation is proposed for the automated adjustment in the production of electronic end-products. The process of adjustment is to tune the variable devices in order to examine the specified performances of the products ready prior to packing. Camcorder is considered as a target product. The required test and adjustment system is developed. The adjustment system consists of a NNC(neural network controller), a sub-NNC, and an auxiliary algorithm utilizing the fuzzy logic. The neural network is trained by means of errors between the outputs of the real system and the network, as well as on the errors between the changing rate of the outputs. Control algorithm is derived to speed up the learning dynamics and to avoid the local minima at higher energy level, and is able to converge to the global minimum at lower energy level. Many unexpected problems in the application of the real system are resolved by the auxiliary algorithms. As the adjustments of multiple items are related to each other, but the significant effect of performance by any specific item is not observed. The experimental result shows that the proposed method performs very effectively and are advantageous in simple architecture, extracting easily the training data without expertise, adapting to the unstable system that the input-output properties of each products are slightly different, with a wide application to other similar adjustment processes.

  • PDF

Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters

  • Jung, Jin-Woo;Leu, Viet Quoc;Dang, Dong Quang;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.980-988
    • /
    • 2014
  • This paper proposes an online gain tuning algorithm for a robust sliding mode speed controller of surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed controller is constructed by a fuzzy neural network control (FNNC) term and a sliding mode control (SMC) term. Based on a fuzzy neural network, the first term is designed to approximate the nonlinear factors while the second term is used to stabilize the system dynamics by employing an online tuning rule. Therefore, unlike conventional speed controllers, the proposed control scheme does not require any knowledge of the system parameters. As a result, it is very robust to system parameter variations. The stability evaluation of the proposed control system is fully described based on the Lyapunov theory and related lemmas. For comparison purposes, a conventional sliding mode control (SMC) scheme is also tested under the same conditions as the proposed control method. It can be seen from the experimental results that the proposed SMC scheme exhibits better control performance (i.e., faster and more robust dynamic behavior, and a smaller steady-state error) than the conventional SMC method.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.

Design of Fuzzy PD Depth Controller for an AUV

  • Loc, Mai Ba;Choi, Hyeung-Sik;Kim, Joon-Young;Kim, Yong-Hwan;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a design of fuzzy PD depth controller for the autonomous underwater vehicle entitled KAUV-1. The vehicle is shaped like a torpedo with light weight and small size and used for marine exploration and monitoring. The KAUV-1 has a unique ducted propeller located at aft end with yawing actuation acting as a rudder. For depth control, the KAUV-1 uses a mass shifter mechanism to change its center of gravity, consequently, can control pitch angle and depth of the vehicle. A design of classical PD depth controller for the KAUV-1 was presented and analyzed. However, it has inherent drawback of gains, which is their values are fixed. Meanwhile, in different operation modes, vehicle dynamics might have different effects on the behavior of the vehicle. In this reason, control gains need to be appropriately changed according to vehicle operating states for better performance. This paper presents a self-tuning gain for depth controller using the fuzzy logic method which is based on the classical PD controller. The self-tuning gains are outputs of fuzzy logic blocks. The performance of the self-tuning gain controller is simulated using Matlab/Simulink and is compared with that of the classical PD controller.

Development of Maneuvering Simulator for PERESTROIKA Catamaran using Fuzzy Inference Technique

  • Lee, Joon-Tark;Ji, Seok--Jun;Choi, Woo--Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.192-199
    • /
    • 2004
  • Navigation simulators have been used in many marine schools and manne training centers since the early 1960's. But these simulators were very expens~ve and were almost limited only in one engine system. In this paper, a catamaran with twin engine system. controlled by two remote control levers and its economic simulator based on a personal computer shall be introduced. One of the main features of catamaran is to control variously its progressing direction. In the static state, a catamaran can move into all the directions and in the dynamic state, ship can change immediately the heading and speed. Although a good navigator can skillfully operate one engine system, it is difficult to control smoothly the catamaran of twin engine system without any threat for the safety of passengers. Thus. in order to bring up the expert navigators. the development of a simulator which makes the training effective is necessary, Therefore, in this paper, a Fuzzy Inference Technique based Maneuvering Simulator for catamaran with twin engine system was developed. In general. in order to develop a catamaran simulator for effective training, first of all. its mathematical model must be acquired. According to the acquired system modeling. the dynamics of simulator is determined, But the proposed technique can omit a complex and tedious mathematical modeling procedures by using the fuzzy inference, which dependent upon only experiences of an expert and can design an efficient training program for unskillful navigators. This developed simulator was consisted of two fuzzy inference routines and two remote control levers, and was focused on effective training of navigators for the safe maneuvering to avoid a collision in a harbor.

Fuzzy Uncertainty Analysis of the Bird Strike Simulation (퍼지이론을 적용한 불확실성이 존재하는 조류충돌 해석)

  • Lee, Bok-Won;Park, Mi-Young;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.983-989
    • /
    • 2007
  • The bird strike simulation is a problem characterized by a high degree of uncertainty. It deals with nonlinear dynamics, complicated models of bird materials and geometry, as well as a plenty of possible boundary and initial conditions. In this complex field, uncertainty management plays an important role. This paper aims to assess the effect of input uncertainty of bird strike analysis on the impact behavior of the leading edge of the WIG(Wing in Ground Effect) craft obtained with finite element analysis using LS-DYNA 3D. The uncertainties of the bird strike simulation arise due to imprecision or lack of information, due to variability or scatter, or as a consequence of model simplification. These uncertain parameters are represented by fuzzy numbers with their membership functions quantifying an initial guess for the actual value of the model parameter. Using the transformation method as a special implementation of fuzzy arithmetic, the model can be analyzed with the intention of determining the influence of each uncertain parameter on the overall bird strike behavior.

Design of the Adaptive Fuzzy Control Scheme and its Application on the Steering Control of the UCT (무인 컨테이너 운송 조향 제어의 적응 퍼지 제어와 응용)

  • 이규준;이영진;윤영진;이원구;김종식;이만형
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.37-46
    • /
    • 2001
  • Fuzzy logic control(FLC) is composed of three parts : fuzzy rule-bases, membership functions, and scaling factors. Well-defined fuzzy rule-base should contain proper physical intuition on the plant, so are needed lots of experiences of the skillful expert. When membership functions are considered, some parameters on the memberships function such as function shape, support, allocation density should be selected well. The rule of scaling factors is 'scaling'(amplifying or reducing) for both input and output signals of the FLC to fit in the membership function support and to operate the plant intentionally. To get a better performance of the FLC, it is necessary to adjust the parameters of the FLC. In general, the adaptation of the scaling factors is the most effective adjustment scheme, compared with that of the fuzzy rule-base or membership function parameters. This study proposes the adaptation scheme of the scaling factors. When the adaptation is performed on-line, the stability of the adaptive FLC should be guaranteed. The stable FLC system can be designed with stability analysis in the sense of Lyapunov stability. To adapt the scaling factors for the error signals, the concept of the conventional MRAC would be introduced into slightly modified form. A tracking accuracy of the control system would be enhanced by the modified shape and support of the membership function. The simulation is achieved on the pilot plant with the hydraulic steering control of a UCT(Unmanned Container Transporter) of which modeling dynamics have lots of severe uncertainties and modeling errors.

  • PDF

Nonlinear Time Series Analysis Tool and its Application to EEG

  • Kim, Eung-Soo;Park, Kyung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.104-112
    • /
    • 2001
  • Simply, Nonlinear dynamics theory means the complicated and noise-like phenomena originated form nonlinearity involved in deterministic dynamical system. An almost all the natural signals have nonlinear property. However, there exist few analysis software tool or package for a research and development of applications. We develop nonlinear time series analysis simulator is to provide a common and useful tool for this purpose and to promote research and development of nonlinear dynamics theory. This simulator is consists of the following four modules such as generation module, preprocessing module, analysis module and ICA module. In this paper, we applied to Electroencephalograph (EEG), as it turned out, our simulator is able to analyze nonlinear time series. Besides, we could get the useful results using the various parameters. These results are used to diagnostic the brain diseases.

  • PDF