• Title/Summary/Keyword: fuzzy confidence interval

Search Result 12, Processing Time 0.014 seconds

Performance Improvement of Freight Logistics Hub Selection in Thailand by Coordinated Simulation and AHP

  • Wanitwattanakosol, Jirapat;Holimchayachotikul, Pongsak;Nimsrikul, Phatchari;Sopadang, Apichat
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.88-96
    • /
    • 2010
  • This paper presents a two-phase quantitative framework to aid the decision making process for effective selection of an efficient freight logistics hub from 8 alternatives in Thailand on the North-South economic corridor. Phase 1 employs both multiple regression and Pearson Feature selection to find the important criteria, as defined by logistics hub score, and to reduce number of criteria by eliminating the less important criteria. The result of Pearson Feature selection indicated that only 5 of 15 criteria affected the logistics hub score. Moreover, Genetic Algorithm (GA) was constructed from original 15 criteria data set to find the relationship between logistics criteria and freight logistics hub score. As a result, the statistical tools are provided the same 5 important criteria, affecting logistics hub score from GA, and data mining tool. Phase 2 performs the fuzzy stochastic AHP analysis with the five important criteria. This approach could help to gain insight into how the imprecision in judgment ratios may affect their alternatives toward the best solution and how the best alternative may be identified with certain confidence. The main objective of the paper is to find the best alternative for selecting freight logistics hub under proper criteria. The experimental results show that by using this approach, Chiang Mai province is the best place with the confidence interval 95%.

Implementation of Intelligence Pulse Wave Detection System (지능형 맥진기 구현)

  • Hong, Y.S.;Yu, J.S.;Chang, S.J.;Sun, S.H.;Lee, W.B.;Nam, D.H.;Yu, M.S.;Choi, M.B.;Lee, S.S.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.245-254
    • /
    • 2013
  • In oriental medicine, it is possible to classify and treat many diseases using the pulse wave detection system. Other problems may arise. As it is a very subjective way to analyze the pulse wave. One problem of the conventional pulse wave detection system is that the arterial pulse sensor is not located correctly at the radial artery. Threrefore measurement results can differ depending on the measurement position and the measurement procedure. This is mostly due to it's sensitivity to high reproducibility. In order to solve this problem this paper proposes an algorithm to analyze the weak pulse wave symptom and strong pulse wave symptom. It uses the portable pulse wave detection system which includes a Hall Sensor. As a final result, it analyzed the weak pulse wave symptom and strong pulse wave symptom by the SPSS statistics technique. It proves that N time (notch point time) and S Amp (rise waveform size) mean values are significantly different in 95% confidence interval.